Filter Set

    Publications

  1. Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55, 324-344. DOI: https://doi.org/10.1029/2018WR023354
  2. Adamolekun, O. (2019). Field validation of proximal sensors on a typical Prairie field. https://hdl.handle.net/1993/33950
  3. Afshar, M., Yilmaz, M., & Crow, W. (2019). Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products. Water Resources Research, 55, 7804-7825. DOI: https://doi.org/10.1029/2019WR025111
  4. Albergel, C., Zheng, Y., Bonan, B., Dutra, E., Rodríguez-Fernández, N., Munier, S., Draper, C., de Rosnay, P., Muñoz-Sabater, J., Balsamo, G., Fairbairn, D., Meurey, C., & Calvet, J.-C. (2019). Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrol. Earth Syst. Sci. Discuss. In review. DOI: https://doi.org/10.5194/hess-2019-534
  5. Almagbile, A., Zeitoun, M., Hazaymeh, K., Sammour, H. A., & Sababha, N. (2019). Statistical analysis of estimated and observed soil moisture in sub-humid climate in north-western Jordan. Environmental monitoring and assessment, 191, 96. DOI: https://doi.org/10.1007/s10661-019-7230-9
  6. Al-Yaari, A., Ducharne, A., Cheruy, F., Crow, W.T., & Wigneron, J.P. (2019). Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States. Sci Rep, 9, 1657. DOI: https://doi.org/10.1038/s41598-018-38309-5
  7. Al-Yaari, A., Wigneron, J.P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.H., & De Lannoy, G. (2019). Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements. Remote Sensing of Environment, 224, 289-303. DOI: https://doi.org/10.1016/j.rse.2019.02.008
  8. Araghi, A., Adamowski, J., Martinez, C.J., & Olesen, J.E. (2019). Projections of future soil temperature in northeast Iran. Geoderma, 349, 11-24. DOI: https://doi.org/10.1016/j.geoderma.2019.04.034
  9. Ardeshir Ebtehaj and Rafael L. Bras (2019). A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in L-band. Remote Sensing of Environment, 233, 111346. DOI: https://doi.org/10.1016/j.rse.2019.111346
  10. Arora, B., Dwivedi, D., Faybishenko, B., Jana, R. B., & Wainwright, H. M. (2019). Understanding and predicting vadose zone processes. Reviews in Mineralogy and Geochemistry, 85, 303-328. DOI: https://doi.org/10.2138/rmg.2019.85.10
  11. Asmuß, T., Bechtold, M., & Tiemeyer, B. (2019). On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sensing 2019, 11, 1659. DOI: https://doi.org/10.3390/rs11141659
  12. Babaeian, E., Sadeghi, M., Jones, S.B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground. Proximal and Satellite Remote Sensing of Soil Moisture. Reviews of Geophysics. DOI: https://doi.org/10.1029/2018rg000618
  13. Baczyk, M. K., Gromek, A., Kulpa, K., Gurdak, R., & Grzybowski, P. (2019). Neural Network-Based Soil Moisture Estimation Using Satellite SAR Data. 2019 Signal Processing Symposium (SPSympo). DOI: https://doi.org/10.1109/SPS.2019.8881987
  14. Baik, J., Zohaib, M., Kim, U., Aadil, M., & Choi, M. (2019). Agricultural drought assessment based on multiple soil moisture products. Journal of arid environments, 167, 43-55. DOI: https://doi.org/10.1016/j.jaridenv.2019.04.007
  15. Bai, L., Long, D., & Yan, L. (2019). Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land. Water Resources Research, 55, 1105-1128. DOI: https://doi.org/10.1029/2018WR024162
  16. Bai, L., Lv, X., & Li, X. (2019). Evaluation of Two SMAP Soil Moisture Retrievals Using Modeled-and Ground-Based Measurements. Remote Sensing 2019, 11, 2891. DOI: https://doi.org/10.3390/rs11242891
  17. Baldwin, D., Manfreda, S., Lin, H., & Smithwick, E. A. (2019). Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sensing 2019, 11, 2013. DOI: https://doi.org/10.3390/rs11172013
  18. Barbosa, L. R., Lira, N. B. d., Coelho, V. H. R., Silans, A. M. B. P. d., Gadêlha, A. N., & Almeida, C. d. N. (2019). Stability of Soil Moisture Patterns Retrieved at Different Temporal Resolutions in a Tropical Watershed. Revista Brasileira de Ciência do Solo, 43. DOI: https://doi.org/10.1590/18069657rbcs20180236
  19. Berthelin, R., Rinderer, M., Andreo, B., Baker, A., Kilian, D., Leonhardt, G., Lotz, A., Lichtenwoehrer, K., Mudarra, M., Padilla, I. Y., Pantoja Agreda, F., Rosolem, R., Vale, A., & Hartmann, A. (2019). A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe. Geosci. Instrum. Method. Data Syst., 9, 11–23. DOI: https://doi.org/10.5194/gi-9-11-2020
  20. Blyverket, J. (2019). Land Surface Data Assimilation of Satellite Derived Surface Soil Moisture: Towards an Integrated Representation of the Arctic Hydrological Cycle. https://bora.uib.no/handle/1956/20940
  21. Blyverket, J., Hamer, P., Bertino, L., Albergel, C., Fairbairn, D., & Lahoz, W. (2019). An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11050478
  22. Blyverket, J., Hamer, P. D., Bertino, L., Albergel, C., Fairbairn, D., & Lahoz, W. A. (2019). Improving soil moisture estimates over the contiguous US using satellite retrievals and ensemble based data assimilation techniques. Preprints. DOI: https://doi.org/10.20944/preprints201901.0224.v1
  23. Caldwell, T. G., Bongiovanni, T., Cosh, M. H., Jackson, T. J., Colliander, A., Abolt, C. J., et al. (2019). The Texas Soil Observation Network: A Comprehensive Soil Moisture Dataset for Remote Sensing and Land Surface Model Validation. Vadose Zone Journal, 18. DOI: https://doi.org/10.2136/vzj2019.04.0034
  24. Carrera, M. L., Bilodeau, B., Bélair, S., Abrahamowicz, M., Russell, A., & Wang, X. (2019). Assimilation of passive L-band microwave brightness temperatures in the Canadian Land Data Assimilation System: Impacts on short-range warm season Numerical Weather Prediction. Journal of Hydrometeorology, 20, 1053-1079. DOI: https://doi.org/10.1175/JHM-D-18-0133.1
  25. Chen, Y., Sun, L., Wang, W., & Pei, Z. (2019). Application of Sentinel 2 data for drought monitoring in Texas, America. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). DOI: https://doi.org/10.1109/Agro-Geoinformatics.2019.8820491
  26. Chipade, R. A. (2019). Soil moisture retrieval using indigenously developed NavIC-GPS-SBAS receiver. Coordinates. DOI: https://www.researchgate.net/publication/333641239
  27. Chuchón Prado, R. (2019). Láminas de riego en el cultivo de papa (Solanum tuberosum L.) variedad “unica” mediante riego por goteo en La Molina. Universidad Nacional Agraria La Molina. DOI: http://repositorio.lamolina.edu.pe/handle/UNALM/4245
  28. Crow, W. T. (2019). Utility of soil moisture data products for natural disaster applications. Elsevier Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment. DOI: https://doi.org/10.1016/B978-0-12-814899-0.00003-1
  29. Dasgupta, K., Das, K., & Padmanaban, M. (2019). Soil Moisture Evaluation Using Machine Learning Techniques on Synthetic Aperture Radar (SAR) And Land Surface Model. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. DOI: https://doi.org/10.1109/IGARSS.2019.8900220
  30. Das, K., Singh, J., & Hazra, J. (2019). Comparison of Smap, Gldas and Simulated Soil Moisture Datasets Over A Malaysian Region. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. DOI: https://doi.org/10.1109/IGARSS.2019.8900589
  31. Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A., Yueh, S., et al. (2019). The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 233, 111380. DOI: https://doi.org/10.1016/j.rse.2019.111380
  32. Deng, K.A.K., Lamine, S., Pavlides, A., Petropoulos, G.P., Bao, Y., Srivastava, P.K., & Guan, Y. (2019). Large scale operational soil moisture mapping from passive MW radiometry: SMOS product evaluation in Europe & USA. International Journal of Applied Earth Observation and Geoinformation, 80, 206-217. DOI: https://doi.org/10.1016/j.jag.2019.04.015
  33. Deng, K., Lamine, S., Pavlides, A., Petropoulos, G., Srivastava, P., Bao, Y., Hristopulos, D., & Anagnostopoulos, V. (2019). Operational Soil Moisture from ASCAT in Support of Water Resources Management. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11050579
  34. Deng, Y., Wang, S., Bai, X., Wu, L., Cao, Y., Li, H., (2019). Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations. Hydrological Processes, 34, 836– 851. DOI: https://doi.org/10.1002/hyp.13636
  35. Di, Chongli and Wang, Tiejun and Istanbulluoglu, Erkan and Jayawardena, A. and Li, Si-Liang and Chen, Xi (2019). Deterministic chaotic dynamics in soil moisture across Nebraska. Journal of Hydrology, 578. DOI: 10.1016/j.jhydrol.2019.124048
  36. Draper, Clara and Reichle, Rolf H. (2019). Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses. Monthly Weather Review, 147, 6, 2163-2188. DOI: 10.1175/MWR-D-18-0393.1
  37. Eroglu, Orhan and Kurum, Mehmet and Boyd, Dylan and Gurbuz, Ali Cafer (2019). High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sensing, 11, 19, 2272. DOI: 10.3390/rs11192272
  38. Fairbairn, David and de Rosnay, Patricia and Browne, Philip A. (2019). The New Stand-Alone Surface Analysis at ECMWF: Implications for Land–Atmosphere DA Coupling. Journal of Hydrometeorology, 20, 10, 2023-2042. DOI: 10.1175/JHM-D-19-0074.1
  39. Fairbairn, David and de Rosnay, Patricia and Browne, Philip and Albergel, Clement and Isaksen, Lars (2019). H SAF root-zone soil moisture products from ASCAT assimilation.
  40. Fan, Dong and Wu, Hua and Dong, Guotao and Jiang, Xiaoguang and Xue, Huazhu (2019). A Temporal Disaggregation Approach for TRMM Monthly Precipitation Products Using AMSR2 Soil Moisture Data. Remote Sensing, 11, 24, 2962. DOI: 10.3390/rs11242962
  41. Fang, Bin and Lakshmi, Venkat and Bindlish, Rajat and Jackson, Thomas J and Liu, Pang-Wei (2019). Downscaling and Validation of SMAP Radiometer Soil Moisture in CONUS. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 6194-6197. DOI: 10.1109/IGARSS.2019.8897943
  42. Ford, Trent W. and Quiring, Steven M. (2019). Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture With a Focus on Drought Monitoring. Water Resources Research, 55, 2, 1565-1582. DOI: 10.1029/2018WR024039
  43. Fu, Haoyang and Zhou, Tingting and Sun, Chenglin (2019). Evaluation and Analysis of AMSR2 and FY3B Soil Moisture Products by an In Situ Network in Cropland on Pixel Scale in the Northeast of China. Remote Sensing, 11, 7, 868. DOI: 10.3390/rs11070868
  44. Ghilain, Nicolas and Arboleda, Alirio and Batelaan, Okke and Ardö, Jonas and Trigo, Isabel and Barrios, Jose-Miguel and Gellens-Meulenberghs, Francoise (2019). A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation. Remote Sensing, 11, 17, 1968. DOI: 10.3390/rs11171968
  45. Gruber, A., De Lannoy, G., & Crow, W. (2019). A Monte Carlo based adaptive Kalman filtering framework for soil moisture data assimilation. Remote Sensing of Environment, 228, 105-114. DOI: https://doi.org/10.1016/j.rse.2019.04.003
  46. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., & Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth System Science Data, 11, 717-739. DOI: https://doi.org/10.5194/essd-11-717-2019
  47. Gu, Y., Gao, M., & Zhao, G. (2019). Earth Observation Payloads and Data Applications of Tiangong-2 Space Laboratory: Technology, Method and Application. Springer. DOI: https://doi.org/10.1007/978-981-13-3501-3_1
  48. Hongtao, J., Huanfeng, S., Xinghua, L., Chao, Z., Huiqin, L., & Fangni, L. (2019). Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model. Remote Sensing of Environment, 231. DOI: https://doi.org/10.1016/j.rse.2019.111224
  49. Hu, T., Zhao, T., Zhao, K., & Shi, J. (2019). A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data. International Journal of Remote Sensing, 40, 6993-7016. DOI: https://doi.org/10.1080/01431161.2019.1597307
  50. Kang, C.S., Kanniah, K.D., & Kerr, Y.H. (2019). Calibration of SMOS Soil Moisture Retrieval Algorithm: A Case of Tropical Site in Malaysia. IEEE Transactions on Geoscience and Remote Sensing, 57, 3827-3839. DOI: https://doi.org/10.1109/tgrs.2018.2888535
  51. Kiyoung, K., Sungwon, J., & Yeongil, L. (2019). A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system. Journal of Korea Water Resources Association, 52, 51-60. DOI: https://doi.org/10.3741/JKWRA.2019.52.1.51
  52. Kovács, K.Z., Hemment, D., Woods, M., van der Velden, N.K., Xaver, A., Giesen, R.H., Burton, V.J., Garrett, N.L., Zappa, L., Long, D., Dobos, E., & Skalsky, R. (2019). Citizen observatory based soil moisture monitoring – the GROW example. Hungarian Geographical Bulletin, 68, 119-139. DOI: https://doi.org/10.15201/hungeobull.68.2.2
  53. Kumar, S., Newman, M., Wang, Y., & Livneh, B. (2019). Potential Reemergence of Seasonal Soil Moisture Anomalies in North America. Journal of Climate, 32, 2707-2734. DOI: https://doi.org/10.1175/jcli-d-18-0540.1
  54. Liao, W., Wang, D., Wang, G., Xia, Y., & Liu, X. (2019). Quality Control and Evaluation of the Observed Daily Data in the North American Soil Moisture Database. Journal of Meteorological Research, 33, 501-518. DOI: https://doi.org/10.1007/s13351-019-8121-2
  55. Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., Xu, C., Zhang, Y., & Zhang, R. (2019). UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 174, 478-489. DOI: https://doi.org/10.1016/j.catena.2018.11.017
  56. Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M.H., & Wang, W. (2019). Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231. DOI: https://doi.org/10.1016/j.rse.2019.111215
  57. Myeni, L., Moeletsi, M.E., & Clulow, A.D. (2019). Present status of soil moisture estimation over the African continent. Journal of Hydrology: Regional Studies, 21, 14-24. DOI: https://doi.org/10.1016/j.ejrh.2018.11.004
  58. Nguyen, H.H., Jeong, J., & Choi, M. (2019). Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors. Journal of Hydrology, 571, 679-696. DOI: https://doi.org/10.1016/j.jhydrol.2019.02.018
  59. Ochsner, T.E., Linde, E., Haffner, M., & Dong, J. (2019). Mesoscale Soil Moisture Patterns Revealed Using a Sparse In Situ Network and Regression Kriging. Water Resources Research. DOI: https://doi.org/10.1029/2018wr024535
  60. Pal, M., & Maity, R. (2019). Development of a spatially-varying Statistical Soil Moisture Profile model by coupling memory and forcing using hydrologic soil groups. Journal of Hydrology, 570, 141-155. DOI: https://doi.org/10.1016/j.jhydrol.2018.12.042
  61. Rodríguez-Fernández, N., de Rosnay, P., Albergel, C., Richaume, P., Aires, F., Prigent, C., & Kerr, Y. (2019). SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11111334
  62. Ropelewski, C. F., Arkin, P. A.: (2019). Climate Analysis. Cambridge University Press, ISBN 978-0-521-89616. DOI: https://doi.org/10.1017/9781139034746
  63. Sadeghi, M., Tuller, M., Warrick, A.W., Babaeian, E., Parajuli, K., Gohardoust, M.R., & Jones, S.B. (2019). An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. Journal of Hydrology, 570, 26-37. DOI: https://doi.org/10.1016/j.jhydrol.2018.12.038
  64. Sun, H., Cai, C., Liu, H., & Yang, B. (2019). Microwave and Meteorological Fusion: A method of Spatial Downscaling of Remotely Sensed Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1107-1119. DOI: https://doi.org/10.1109/jstars.2019.2901921
  65. Tian, J., Zhang, B., He, C., Han, Z., Bogena, H.R., & Huisman, J.A. (2019). Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed. Northwest China. Agricultural and Forest Meteorology, 271, 225-239. DOI: https://doi.org/10.1016/j.agrformet.2019.03.006
  66. Tian, S., Renzullo, L.J., van Dijk, A.I.J.M., Tregoning, P., & Walker, J.P. (2019). Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrology and Earth System Sciences, 23, 1067-1081. DOI: https://doi.org/10.5194/hess-23-1067-2019
  67. Wang, C., Wang, Z., Kong, Y., Zhang, F., Yang, K., & Zhang, T. (2019). Most of the Northern Hemisphere Permafrost Remains under Climate Change. Sci Rep, 9, 3295. DOI: https://doi.org/10.1038/s41598-019-39942-4
  68. Wang, L., He, B., Bai, X., Xing, M. (2019). Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data. Photogrammetric Engineering & Remote Sensing, 85, 7, 43-54(12). DOI: https://doi.org/10.14358/PERS.85.1.43
  69. Wang, Q., van der Velde, R., Ferrazzoli, P., Chen, X., Bai, X., & Su, Z. (2019). Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations. International Journal of Applied Earth Observation and Geoinformation, 77, 108-118. DOI: https://doi.org/10.1016/j.jag.2019.01.005
  70. Wang, Y., Yang, J., Chen, Y., Fang, G., Duan, W., Li, Y., & De Maeyer, P. (2019). Quantifying the Effects of Climate and Vegetation on Soil Moisture in an Arid Area. China. Water, 11. DOI: https://doi.org/10.3390/w11040767
  71. Xia, Y., Hao, Z., Shi, C., Li, Y., Meng, J., Xu, T., Wu, X., & Zhang, B. (2019). Regional and Global Land Data Assimilation Systems Innovations, Challenges, and Prospects. Journal of Meteorological Research, 33, 159-189. DOI: https://doi.org/10.1007/s13351-019-8172-4
  72. Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., & Brocca, L. (2019). Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrology and Earth System Sciences, 23, 897-923. DOI: https://doi.org/10.5194/hess-23-897-2019
  73. Zeng, L., Hu, S., Xiang, D., Zhang, X., Li, D., Li, L., & Zhang, T. (2019). Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11030284
  74. Zhang, Q., Fan, K., Singh, V.P., Song, C., Xu, C.Y., & Sun, P. (2019). Is Himalayan-Tibetan Plateau "drying"? Historical estimations and future trends of surface soil moisture. Sci Total Environ, 658, 374-384. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.209
  75. Zhang, R., Kim, S., & Sharma, A. (2019). A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sensing of Environment, 223, 82-94. DOI: https://doi.org/10.1016/j.rse.2019.01.015
  76. Zhang, S., Meurey, C., & Calvet, J.-C. (2019). Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations. Atmospheric Chemistry and Physics, 19, 5005-5020. DOI: https://doi.org/10.5194/acp-19-5005-2019
  77. Zhu, L., Wang, H., Tong, C., Liu, W., & Du, B. (2019). Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors (Basel), 19. DOI: https://doi.org/10.3390/s19122718
  78. Al-Yaari, A., Dayau, S., Chipeaux, C., Aluome, C., Kruszewski, A., Loustau, D., & Wigneron, J.P. (2018). The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10111839
  79. Bao, Y., Lin, L., Wu, S., Kwal Deng, K.A., & Petropoulos, G.P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76-85. DOI: https://doi.org/10.1016/j.jag.2018.05.026
  80. Belfort, B., Toloni, I., Ackerer, P., Cotel, S., Viville, D., & Lehmann, F. (2018). Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration. Geosciences, 8. DOI: https://doi.org/10.3390/geosciences8020072
  81. Benninga, H.-J.F., Carranza, C.D.U., Pezij, M., van Santen, P., van der Ploeg, M.J., Augustijn, D.C.M., & van der Velde, R. (2018). The Raam regional soil moisture monitoring network in the Netherlands. Earth System Science Data, 10, 61-79. DOI: https://doi.org/10.5194/essd-10-61-2018
  82. Bogena, H.R., Montzka, C., Huisman, J.A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H.J., van der Kruk, J., Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., Sorg, J., & Vereecken, H. (2018). The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone Journal, 17. DOI: https://doi.org/10.2136/vzj2018.03.0055
  83. Cassardo, C., Park, S., O, S., & Galli, M. (2018). Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy. Water, 10. DOI: https://doi.org/10.3390/w10070954
  84. Dabrowska-Zielinska, K., Musial, J., Malinska, A., Budzynska, M., Gurdak, R., Kiryla, W., Bartold, M., & Grzybowski, P. (2018). Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10121979
  85. Dirmeyer, P.A., Chen, L., Wu, J., Shin, C.S., Huang, B., Cash, B.A., Bosilovich, M.G., Mahanama, S., Koster, R.D., Santanello, J.A., Ek, M.B., Balsamo, G., Dutra, E., & Lawrence, D.M. (2018). Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations. J Hydrometeorol, 19, 375-392. DOI: https://doi.org/10.1175/JHM-D-17-0152.1
  86. Ebrahimi, M., Alavipanah, S.K., Hamzeh, S., Amiraslani, F., Neysani Samany, N., & Wigneron, J.-P. (2018). Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions. Journal of Hydrology, 557, 740-752. DOI: https://doi.org/10.1016/j.jhydrol.2017.12.051
  87. Esposito, G., Matano, F., & Scepi, G. (2018). Analysis of Increasing Flash Flood Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic Area. Frontiers in Earth Science, 6, Italy.. DOI: https://doi.org/10.3389/feart.2018.00063
  88. Fang, B., Lakshmi, V., Bindlish, R., & Jackson, T. (2018). AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10101575
  89. Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., & Jäger, M. (2018). Synergies for Soil Moisture Retrieval Across Scales From Airborne Polarimetric SAR, Cosmic Ray Neutron Roving, and an In Situ Sensor Network. Water Resources Research, 54, 9364-9383. DOI: https://doi.org/10.1029/2018wr023337
  90. Franz, T., Mengistu, M., Everson, C., & Vather, T. (2018). Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture. South African Journal of Science, 114. DOI: https://doi.org/10.17159/sajs.2018/20170422
  91. González-Zamora, Á., Sánchez, N., Pablos, M., & Martínez-Fernández, J. (2018). CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sensing of Environment. DOI: https://doi.org/10.1016/j.rse.2018.02.010
  92. Greifeneder, F., Khamala, E., Sendabo, D., Wagner, W., Zebisch, M., Farah, H., & Notarnicola, C. (2018). Detection of soil moisture anomalies based on Sentinel-1. Physics and Chemistry of the Earth Parts A/B/C. DOI: https://doi.org/10.1016/j.pce.2018.11.009
  93. Gruber, A., Crow, W.T., & Dorigo, W.A. (2018). Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain. Water Resources Research, 54, 1353-1367. DOI: https://doi.org/10.1002/2017wr021277
  94. Gumbricht, T. (2018). Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10040611
  95. Högström, E., Heim, B., Bartsch, A., Bergstedt, H., & Pointner, G. (2018). Evaluation of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments. Journal of Geophysical Research: Earth Surface, 123, 3190-3205. DOI: https://doi.org/10.1029/2018jf004658
  96. Jeong, J., Cho, S., Baik, J., & Choi, M. (2018). A Study on the Establishment of a Korean Soil Moisture Network (2): Measurement of Intermediate-Scale Soil Moisture Using a Cosmic-Ray Sensor. Journal of the Korean Society of Hazard Mitigation, 18, 83-91. DOI: https://doi.org/10.9798/kosham.2018.18.7.83
  97. Kang, J., Jin, R., Li, X., Zhang, Y., & Zhu, Z. (2018). Spatial Upscaling of Sparse Soil Moisture Observations Based on Ridge Regression. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10020192
  98. Kim, H., Parinussa, R., Konings, A.G., Wagner, W., Cosh, M.H., Lakshmi, V., Zohaib, M., & Choi, M. (2018). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260-275. DOI: https://doi.org/10.1016/j.rse.2017.10.026
  99. Kim, S., Jeong, J., Zohaib, M., & Choi, M. (2018). Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine. Stochastic Environmental Research and Risk Assessment, 32, 3455-3473. DOI: https://doi.org/10.1007/s00477-018-1620-3
  100. Kolassa, J., Reichle, R.H., Liu, Q., Alemohammad, S.H., Gentine, P., Aida, K., Asanuma, J., Bircher, S., Caldwell, T., Colliander, A., Cosh, M., Collins, C.H., Jackson, T.J., Martinez-Fernandez, J., McNairn, H., Pacheco, A., Thibeault, M., & Walker, J.P. (2018). Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens Environ, 204, 43-59. DOI: https://doi.org/10.1016/j.rse.2017.10.045
  101. Lei, F., Crow, W.T., Holmes, T.R.H., Hain, C., & Anderson, M.C. (2018). Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength. Water Resources Research, 54, 8196-8215. DOI: https://doi.org/10.1029/2018wr023469
  102. Lei, F., Crow, W.T., Shen, H., Su, C.-H., Holmes, T.R.H., Parinussa, R.M., & Wang, G. (2018). Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sensing of Environment, 205, 85-99. DOI: https://doi.org/10.1016/j.rse.2017.11.002
  103. Lembrechts, J.J., Nijs, I., & Lenoir, J. (2018). Incorporating microclimate into species distribution models. Ecography. DOI: https://doi.org/10.1111/ecog.03947
  104. Li, Y., Li, Y., Yuan, X., Zhang, L., & Sha, S. (2018). Evaluation of Model-Based Soil Moisture Drought Monitoring over Three Key Regions in China. Journal of Applied Meteorology and Climatology, 57, 1989-2004. DOI: https://doi.org/10.1175/jamc-d-17-0118.1
  105. Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., & Miralles, D. (2018). Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10111720
  106. Meng, Q., Zhang, L., Xie, Q., Yao, S., Chen, X., & Zhang, Y. (2018). Combined Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval over Agricultural Areas Using Artificial Neural Network. Advances in Meteorology, 1-11. DOI: https://doi.org/10.1155/2018/9315132
  107. Mishra, V., Shah, R., Azhar, S., Shah, H., Modi, P., & Kumar, R. (2018). Reconstruction of droughts in India using multiple land-surface models (1951–2015). Hydrology and Earth System Sciences, 22, 2269-2284. DOI: https://doi.org/10.5194/hess-22-2269-2018
  108. Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G., & Hornibrook, E.R.C. (2018). Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development, 11, 2009-2032. DOI: https://doi.org/10.5194/gmd-11-2009-2018
  109. Parinussa, R.M., Wang, G., Liu, Y., Lou, D., Hagan, D.F.T., Zhan, M., Su, B., & Jiang, T. (2018). Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People’s Republic of China. International Journal of Remote Sensing, 1-13. DOI: https://doi.org/10.1080/01431161.2018.1500729
  110. Qin, M., Giménez, D., & Miskewitz, R. (2018). Temporal dynamics of subsurface soil water content estimated from surface measurement using wavelet transform. Journal of Hydrology, 563, 834-850. DOI: https://doi.org/10.1016/j.jhydrol.2018.06.023
  111. Rowlandson, T.L., Berg, A.A., Roy, A., Kim, E., Pardo Lara, R., Powers, J., Lewis, K., Houser, P., McDonald, K., Toose, P., Wu, A., De Marco, E., Derksen, C., Entin, J., Colliander, A., Xu, X., & Mavrovic, A. (2018). Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign. Remote Sensing of Environment, 211, 59-70. DOI: https://doi.org/10.1016/j.rse.2018.04.003
  112. Santi, E., Paloscia, S., Pettinato, S., Brocca, L., Ciabatta, L., & Entekhabi, D. (2018). Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy. Remote Sensing of Environment, 212, 21-30. DOI: https://doi.org/10.1016/j.rse.2018.04.039
  113. Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., & Karszenbaum, H. (2018). Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. International Journal of Applied Earth Observation and Geoinformation, 64, 96-103. DOI: https://doi.org/10.1016/j.jag.2017.08.016
  114. Stein, S., Eberhard, E., Grosse, M., Helming, K., Hierold, W., Hoffmann, C., Kühnert, T., Liess, M., Russel, D., & S., S. (2018). Report on available soil data for German agricultural areas. -
  115. Tóth, E., Gelybó, G., Dencső, M., Kása, I., Birkás, M., & Horel, Á. (2018). Soil CO 2 Emissions in a Long-Term Tillage Treatment Experiment. Soil Management and Climate Change, 293-307
  116. Um, M.-J., Kim, M., Kim, Y., & Park, D. (2018). Drought Assessment with the Community Land Model for 1951–2010 in East Asia. Sustainability, 10. DOI: https://doi.org/10.3390/su10062100
  117. van der Schalie, R., de Jeu, R., Parinussa, R., Rodríguez-Fernández, N., Kerr, Y., Al-Yaari, A., Wigneron, J.-P., & Drusch, M. (2018). The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10010107
  118. Wang, X., Ciais, P., Wang, Y., & Zhu, D. (2018). Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob Chang Biol. DOI: https://doi.org/10.1111/gcb.14335
  119. Williamson, M., Rowlandson, T.L., Berg, A.A., Roy, A., Toose, P., Derksen, C., Arnold, L., & Tetlock, E. (2018). L-band radiometry freeze/ thaw validation using air temperature and ground measurements. Remote Sensing Letters, 9, 403-410. DOI: https://doi.org/10.1080/2150704x.2017.1422872
  120. Wu, M., Scholze, M., Voßbeck, M., Kaminski, T., & Hoffmann, G. (2018). Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11010027
  121. Wu, M., Scholze, M., Voßbeck, M., Kaminski, T., & Hoffmann, G. (2018). Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS. Remote Sensing, 11. DOI: https://doi.org/10.3390/rs11010027
  122. Xu, H., Yuan, Q., Li, T., Shen, H., Zhang, L., & Jiang, H. (2018). Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S. Remote Sensing, 10. DOI: https://doi.org/10.3390/rs10091351
  123. Ye, K., & Lau, N.-C. (2018). Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate. Climate Dynamics. DOI: https://doi.org/10.1007/s00382-018-4180-9
  124. Zhang, S., Calvet, J.-C., Darrozes, J., Roussel, N., Frappart, F., & Bouhours, G. (2018). Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France. Hydrology and Earth System Sciences, 22, 1931-1946. DOI: https://doi.org/10.5194/hess-22-1931-2018
  125. Zhao, L., & Yang, Z.-L. (2018). Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation. Remote Sensing of Environment, 216, 13-27. DOI: https://doi.org/10.1016/j.rse.2018.06.033
  126. Abdi, A., Boke-Olén, N., Tenenbaum, D., Tagesson, T., Cappelaere, B., & Ardö, J. (2017). Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9030294
  127. Afshar, M.H., & Yilmaz, M.T. (2017). The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products. Remote Sensing of Environment, 196, 224-237. DOI: https://doi.org/10.1016/j.rse.2017.05.017
  128. Al-Yaari, A., Wigneron, J.P., Kerr, Y., Rodriguez-Fernandez, N., O'Neill, P.E., Jackson, T.J., De Lannoy, G.J.M., Al Bitar, A., Mialon, A., Richaume, P., Walker, J.P., Mahmoodi, A., & Yueh, S. (2017). Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets. Remote Sensing of Environment, 193, 257-273. DOI: https://doi.org/10.1016/j.rse.2017.03.010
  129. Anoop, S., Maurya, D.K., Rao, P.V.N., & Sekhar, M. (2017). Validation and Comparison of LPRM Retrieved Soil Moisture Using AMSR2 Brightness Temperature at Two Spatial Resolutions in the Indian Region. IEEE Geoscience and Remote Sensing Letters, 14, 1561-1564. DOI: https://doi.org/10.1109/lgrs.2017.2722542
  130. Baguis Pierre, & Emmanuel, R. (2017). Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9080820
  131. Brocca, L., Crow, W.T., Ciabatta, L., Massari, C., de Rosnay, P., Enenkel, M., Hahn, S., Amarnath, G., Camici, S., Tarpanelli, A., & Wagner, W. (2017). A Review of the Applications of ASCAT Soil Moisture Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2285-2306. DOI: https://doi.org/10.1109/jstars.2017.2651140
  132. Candy, B., Saunders, R.W., Ghent, D., & Bulgin, C.E. (2017). The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts. Journal of Geophysical Research: Atmospheres, 122, 9783-9802. DOI: https://doi.org/10.1002/2016jd026417
  133. Cerlini, P.B., Meniconi, S., & Brunone, B. (2017). Groundwater Supply and Climate Change Management by Means of Global Atmospheric Datasets. Preliminary Results. Procedia Engineering, 186, 420-427. DOI: https://doi.org/10.1016/j.proeng.2017.03.245
  134. De Santis, D., & Biondi, D. (2017). A quality assessment of the soil water index by the propagation of ASCAT soil moisture error estimates through an exponential filter. International Journal of Remote Sensing, 39, 232-257. DOI: https://doi.org/10.1080/01431161.2017.1382745
  135. Dong, J., & Crow, W. (2017). An improved triple collocation analysis algorithm for decomposing auto-correlated and white soil moisture retrieval errors. Journal of Geophysical Research: Atmospheres. DOI: https://doi.org/10.1002/2017jd027387
  136. Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., & Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185-215. DOI: https://doi.org/10.1016/j.rse.2017.07.001
  137. Dwevedi, A., Kumar, P., Kumar, P., Kumar, Y., Sharma, Y.K., & Kayastha, A.M. (2017). 15 - Soil sensors: detailed insight into research updates, significance, and future prospects A2 - Grumezescu, Alexandru Mihai. New Pesticides and Soil Sensors. Academic Press, 561-594
  138. Emery, C. (2017). Contribution de la future mission altim´etrique `a large fauch´ee SWOT pour la mod´elisation hydrologique `a grande ´echelle. -
  139. Fernandez-Moran, R., Wigneron, J.P., De Lannoy, G., Lopez-Baeza, E., Parrens, M., Mialon, A., Mahmoodi, A., Al-Yaari, A., Bircher, S., Al Bitar, A., Richaume, P., & Kerr, Y. (2017). A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm. International Journal of Applied Earth Observation and Geoinformation, 62, 27-38. DOI: https://doi.org/10.1016/j.jag.2017.05.013
  140. Gasch, C.K., Brown, D.J., Brooks, E.S., Yourek, M., Poggio, M., Cobos, D.R., & Campbell, C.S. (2017). A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Computers and Electronics in Agriculture, 137, 29-40. DOI: https://doi.org/10.1016/j.compag.2017.03.018
  141. Gruber, A., Dorigo, W.A., Crow, W., & Wagner, W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing, 55, 6780-6792. DOI: https://doi.org/10.1109/TGRS.2017.2734070
  142. Hartmann, A., Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc Natl Acad Sci U S A, 114, 2842-2847. DOI: https://doi.org/10.1073/pnas.1614941114
  143. Ji, P., Yuan, X., & Liang, X.-Z. (2017). Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling?. Journal of Geophysical Research: Atmospheres. DOI: https://doi.org/10.1002/2017jd027366
  144. Jung, C., Lee, Y., Cho, Y., & Kim, S. (2017). A Study of Spatial Soil Moisture Estimation Using a Multiple Linear Regression Model and MODIS Land Surface Temperature Data Corrected by Conditional Merging. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9080870
  145. Kapilaratne, R.G.C.J., & Lu, M. (2017). Automated general temperature correction method for dielectric soil moisture sensors. Journal of Hydrology, 551, 203-216. DOI: https://doi.org/10.1016/j.jhydrol.2017.05.050
  146. Karthikeyan, L., Pan, M., Wanders, N., Kumar, D.N., & Wood, E.F. (2017). Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Advances in Water Resources, 109, 236-252. DOI: https://doi.org/10.1016/j.advwatres.2017.09.010
  147. Kim, H., Parinussa, R., Konings, A.G., Wagner, W., Cosh, M.H., Lakshmi, V., Zohaib, M., Choi, M. (2017). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260-275. DOI: dx.doi.org/10.1016/j.rse.2017.10.026
  148. Kim, S., Balakrishnan, K., Liu, Y., Johnson, F., & Sharma, A. (2017). Spatial Disaggregation of Coarse Soil Moisture Data by Using High-Resolution Remotely Sensed Vegetation Products. IEEE Geoscience and Remote Sensing Letters, 14, 1604-1608. DOI: https://doi.org/10.1109/lgrs.2017.2725945
  149. Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, S.H. (2017). Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sensing of Environment, 195, 202-217. DOI: https://doi.org/10.1016/j.rse.2017.04.020
  150. Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P., Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew, A., Merchant, C.J., Müller, B., Popp, T., Reuter, M., Sandven, S., Senftleben, D., Stengel, M., Van Roozendael, M., Wenzel, S., & Willén, U. (2017). Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sensing of Environment, 203, 9-39. DOI: https://doi.org/10.1016/j.rse.2017.01.007
  151. Lee, J.H., Zhao, C., & Kerr, Y. (2017). Stochastic Bias Correction and Uncertainty Estimation of Satellite-Retrieved Soil Moisture Products. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9080847
  152. Leeper, R.D., Bell, J.E., Vines, C., & Palecki, M. (2017). An Evaluation of the North American Regional Reanalysis Simulated Soil Moisture Conditions during the 2011–13 Drought Period. Journal of Hydrometeorology, 18, 515-527. DOI: https://doi.org/10.1175/jhm-d-16-0132.1
  153. Liangjing, Z. (2017). Terrestrial water storage from GRACE gravity data for hydrometeorological applications. -
  154. Lievens, H., Martens, B., Verhoest, N.E.C., Hahn, S., Reichle, R.H., & Miralles, D.G. (2017). Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates. Remote Sensing of Environment, 189, 194-210. DOI: https://doi.org/10.1016/j.rse.2016.11.022
  155. Lievens, H., Reichle, R.H., Liu, Q., De Lannoy, G.J.M., Dunbar, R.S., Kim, S.B., Das, N.N., Cosh, M., Walker, J.P., & Wagner, W. (2017). Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophysical Research Letters, 44, 6145-6153. DOI: https://doi.org/10.1002/2017gl073904
  156. Lin, X., Wen, J., Tang, Y., Ma, M., You, D., Dou, B., Wu, X., Zhu, X., Xiao, Q., & Liu, Q. (2017). A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product. International Journal of Digital Earth, 11, 308-328. DOI: https://doi.org/10.1080/17538947.2017.1320593
  157. Liu, Q., Hao, Y., Stebler, E., Tanaka, N., & Zou, C.B. (2017). Impact of plant functional types on coherence between precipitation and soil moisture - a wavelet analysis. Geophysical Research Letters.. DOI: https://doi.org/10.1002/2017gl075542
  158. Liu, Z., Li, P., & Yang, J. (2017). Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9111197
  159. Mahecha, M.D., Gans, F., Sippel, S., Donges, J.F., Kaminski, T., Metzger, S., Migliavacca, M., Papale, D., Rammig, A., & Zscheischler, J. (2017). Detecting impacts of extreme events with ecological in-situ monitoring networks. Biogeosciences Discussions, 1-33. DOI: https://doi.org/10.5194/bg-2017-130
  160. Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., & Verhoest, N.E.C. (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903-1925. DOI: https://doi.org/10.5194/gmd-10-1903-2017
  161. Martinez, G., Brocca, L., Gerke, H.H., & Pachepsky, Y.A. (2017). Soil Variability and Biogeochemical Fluxes: Toward a Better Understanding of Soil Processes at the Land Surface. Vadose Zone Journal, 16. DOI: https://doi.org/10.2136/vzj2017.07.0145
  162. Massari, C., Su, C.-H., Brocca, L., Sang, Y.-F., Ciabatta, L., Ryu, D., & Wagner, W. (2017). Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sensing of Environment, 198, 17-29. DOI: https://doi.org/10.1016/j.rse.2017.05.037
  163. McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H., & Wood, E.F. (2017). The Future of Earth Observation in Hydrology. Hydrology and Earth System Sciences Discussions, 1-55. DOI: https://doi.org/10.5194/hess-2017-54
  164. Miyaoka, K., Gruber, A., Ticconi, F., Hahn, S., Wagner, W., Figa-Saldana, J., & Anderson, C. (2017). Triple Collocation Analysis of Soil Moisture From Metop-A ASCAT and SMOS Against JRA-55 and ERA-Interim. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2274-2284. DOI: https://doi.org/10.1109/jstars.2016.2632306
  165. Mohanty, B.P., Cosh, M.H., Lakshmi, V., & Montzka, C. (2017). Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal, 16. DOI: https://doi.org/10.2136/vzj2016.10.0105
  166. Montzka, C., Bogena, H., Zreda, M., Monerris, A., Morrison, R., Muddu, S., & Vereecken, H. (2017). Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9020103
  167. Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G.N., & Hornibrook, E.R.C. (2017). Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development Discussions, 1-38. DOI: https://doi.org/10.5194/gmd-2017-124
  168. Nguyen, H.H., Kim, H., & Choi, M. (2017). Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region. Advances in Water Resources, 108, 125-138. DOI: https://doi.org/10.1016/j.advwatres.2017.07.020
  169. Nilawar, A., Calderella, C., Lakhankar, T., Waikar, M., & Munoz, J. (2017). Satellite Soil Moisture Validation Using Hydrological SWAT Model: A Case Study of Puerto Rico, USA. Hydrology, 4. DOI: https://doi.org/10.3390/hydrology4040045
  170. Pan, X., Kornelsen, K.C., & Coulibaly, P. (2017). Estimating Root Zone Soil Moisture at Continental Scale Using Neural Networks. JAWRA Journal of the American Water Resources Association, 53, 220-237. DOI: https://doi.org/10.1111/1752-1688.12491
  171. Park, S., Im, J., Park, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237-238, 257-269. DOI: https://doi.org/10.1016/j.agrformet.2017.02.022
  172. Park, S., Park, S., Im, J., Rhee, J., Shin, J., & Park, J. (2017). Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees. Water, 9. DOI: https://doi.org/10.3390/w9050332
  173. Peng, J., Loew, A., Merlin, O., & Verhoest, N.E.C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55, 341-366. DOI: https://doi.org/10.1002/2016RG000543
  174. Petropoulos, G.P., & McCalmont, J.P. (2017). An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors (Basel), 17. DOI: https://doi.org/10.3390/s17071481
  175. Phillips, T.J., Klein, S.A., Ma, H.-Y., Tang, Q., Xie, S., Williams, I.N., Santanello, J.A., Cook, D.R., & Torn, M.S. (2017). Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains. Journal of Geophysical Research: Atmospheres. DOI: https://doi.org/10.1002/2017jd027141
  176. Pierdicca, N., Fascetti, F., Pulvirenti, L., & Crapolicchio, R. (2017). Error Characterization of Soil Moisture Satellite Products: Retrieving Error Cross-Correlation Through Extended Quadruple Collocation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4522-4530. DOI: https://doi.org/10.1109/jstars.2017.2714025
  177. Przeździecki, K., Zawadzki, J., Cieszewski, C., & Bettinger, P. (2017). Estimation of soil moisture across broad landscapes of Georgia and South Carolina using the triangle method applied to MODIS satellite imagery. Silva Fennica, 51. DOI: https://doi.org/10.14214/sf.1683
  178. Rains, D., Han, X., Lievens, H., Montzka, C., & Verhoest, N.E.C. (2017). SMOS brightness temperature assimilation into the Community Land Model. Hydrology and Earth System Sciences, 21, 5929-5951. DOI: https://doi.org/10.5194/hess-21-5929-2017
  179. Ran, Y., Li, X., Jin, R., Kang, J., & Cosh, M.H. (2017). Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape. Water Resources Research, 53, 283-301. DOI: https://doi.org/10.1002/2015wr018182
  180. Ray, R., Fares, A., He, Y., & Temimi, M. (2017). Evaluation and Inter-Comparison of Satellite Soil Moisture Products Using In Situ Observations over Texas, U.S. Water, 9. DOI: https://doi.org/10.3390/w9060372
  181. Reichle, R.H., Draper, C.S., Liu, Q., Girotto, M., Mahanama, S.P.P., Koster, R.D., & Lannoy, G.J.M.D. (2017). Assessment of MERRA-2 Land Surface Hydrology Estimates. Journal of Climate, 30, 2937-2960. DOI: https://doi.org/10.1175/jcli-d-16-0720.1
  182. Rodríguez-Fernández, N.J., Muñoz Sabater, J., Richaume, P., de Rosnay, P., Kerr, Y.H., Albergel, C., Drusch, M., & Mecklenburg, S. (2017). SMOS near-real-time soil moisture product: processor overview and first validation results. Hydrology and Earth System Sciences, 21, 5201-5216. DOI: https://doi.org/10.5194/hess-21-5201-2017
  183. Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., & Quegan, S. (2017). Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences Discussions, 1-49. DOI: https://doi.org/10.5194/bg-2016-557
  184. Sun, G., Peng, F., & Mu, M. (2017). Uncertainty assessment and sensitivity analysis of soil moisture based on model parameter errors – Results from four regions in China. Journal of Hydrology, 555, 347-360. DOI: https://doi.org/10.1016/j.jhydrol.2017.09.059
  185. Sun, Y., Huang, S., Ma, J., Li, J., Li, X., Wang, H., Chen, S., & Zang, W. (2017). Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9030292
  186. Tobin, K.J., Torres, R., Crow, W.T., & Bennett, M.E. (2017). Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS. Hydrology and Earth System Sciences, 21, 4403-4417. DOI: https://doi.org/10.5194/hess-21-4403-2017
  187. van der Schalie, R., de Jeu, R.A.M., Kerr, Y.H., Wigneron, J.P., Rodríguez-Fernández, N.J., Al-Yaari, A., Parinussa, R.M., Mecklenburg, S., & Drusch, M. (2017). The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E. Remote Sensing of Environment, 189, 180-193. DOI: https://doi.org/10.1016/j.rse.2016.11.026
  188. Varikoden, H., & Revadekar, J.V. (2017). Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon. Pure and Applied Geophysics, 175, 1187-1196. DOI: https://doi.org/10.1007/s00024-017-1740-6
  189. Williamson, M., Adams, J.R., Berg, A.A., Derksen, C., Toose, P., & Walker, A. (2017). Plot-scale assessment of soil freeze/thaw detection and variability with impedance probes: implications for remote sensing validation networks. Hydrology Research. DOI: https://doi.org/10.2166/nh.2017.183
  190. Xing, C., Chen, N., Zhang, X., & Gong, J. (2017). A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9050484
  191. Yao, P., Shi, J., Zhao, T., Lu, H., & Al-Yaari, A. (2017). Rebuilding Long Time Series Global Soil Moisture Products Using the Neural Network Adopting the Microwave Vegetation Index. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9010035
  192. Yuan, S., & Quiring, S.M. (2017). Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrology and Earth System Sciences, 21, 2203-2218. DOI: https://doi.org/10.5194/hess-21-2203-2017
  193. Zhang, X., Zhang, T., Zhou, P., Shao, Y., & Gao, S. (2017). Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sensing, 9. DOI: https://doi.org/10.3390/rs9020104
  194. Zhao, W., Li, A., Jin, H., Zhang, Z., Bian, J., & Yin, G. (2017). Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and In Situ Measurements. IEEE Transactions on Geoscience and Remote Sensing, 55, 2632-2645. DOI: https://doi.org/10.1109/tgrs.2017.2649522
  195. Zhao, W., Li, A., & Zhao, T. (2017). Potential of Estimating Surface Soil Moisture With the Triangle-Based Empirical Relationship Model. IEEE Transactions on Geoscience and Remote Sensing, 55, 6494-6504. DOI: https://doi.org/10.1109/tgrs.2017.2728815
  196. Zhou, H., Chang, J., Sun, J., Shang, C., Han, F., & Hu, D. (2017). Spatial variation of temperature of surface soil layer adjacent to constructions: A theoretical framework for atmosphere-building-soil energy flow systems. Building and Environment, 124, 143-152. DOI: https://doi.org/10.1016/j.buildenv.2017.08.002
  197. Al-Yaari, A., Wigneron, J. P., Kerr, Y., de Jeu, R., Rodriguez-Fernandez, N., van der Schalie, R., … Ducharne, A. (2016). Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sensing of Environment, 180, 453–464. DOI: https://doi.org/10.1016/j.rse.2015.11.022
  198. An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., … Ke, Z. (2016). Validation of the ESA CCI soil moisture product in China. International Journal of Applied Earth Observation and Geoinformation, 48, 28–36. DOI: https://doi.org/10.1016/j.jag.2015.09.009
  199. Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau: EVALUATE GLDAS SOIL MOISTURE OVER TP. Journal of Geophysical Research: Atmospheres, 121, 6, 2658–2678. DOI: https://doi.org/10.1002/2015JD024131
  200. Chen, X., Su, Y., Liao, J., Shang, J., Dong, T., Wang, C., … Liu, L. (2016). Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979-2010): China’s 32 Year Soil Moisture. Journal of Geophysical Research: Atmospheres, 121, 10, 5177–5192. DOI: https://doi.org/10.1002/2015JD024676
  201. Cissé, S., Eymard, L., Ottlé, C., Ndione, J., Gaye, A., & Pinsard, F. (2016). Rainfall Intra-Seasonal Variability and Vegetation Growth in the Ferlo Basin (Senegal). Remote Sensing, 8, 1, 66. DOI: https://doi.org/10.3390/rs8010066
  202. Du, J., Kimball, J. S., & Jones, L. A. (2016). Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 54, 1, 597–608. DOI: https://doi.org/10.1109/TGRS.2015.2462758
  203. Enenkel, M., Reimer, C., Dorigo, W., Wagner, W., Pfeil, I., Parinussa, R., & De Jeu, R. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20, 10, 4191–4208. DOI: https://doi.org/10.5194/hess-20-4191-2016
  204. Faridani, F., Farid, A., Ansari, H., & Manfreda, S. (2016). Estimation of the Root-Zone Soil Moisture Using Passive Microwave Remote Sensing and SMAR Model. Journal of Irrigation and Drainage Engineering, 4016070. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001115
  205. Fascetti, F., Pierdicca, N., Crapolicchio, R., Pulvirenti, L., & Muoz-Sabater, J. (2016). An assessment of SMOS version 6.20 products through Triple and Quadruple Collocation techniques considering ASCAT, ERA/Interim LAND, ISMNand SMAP soil moisture data. IEEE, 91–94. DOI: https://doi.org/10.1109/MICRORAD.2016.7530511
  206. Fascetti, F., Pierdicca, N., Pulvirenti, L., Crapolicchio, R., & Muñoz-Sabater, J. (2016). A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013. International Journal of Applied Earth Observation and Geoinformation, 45, 135–142. DOI: https://doi.org/10.1016/j.jag.2015.09.008
  207. Fernandez-Moran, R., Wigneron, J.-P., De Lannoy, G., Lopez-Baeza, E., Mialon, A., Mahmoodi, A., … Kerr, Y. (2016). Calibrating the effective scattering albedo in the SMOS algorithm: Some first results. IEEE, 826–829. DOI: https://doi.org/10.1109/IGARSS.2016.7729209
  208. Gonzalez-Zamora, A., Sanchez, N., & Martinez-Fernandez, J. (2016). Validation of Aquarius Soil Moisture Products Over the Northwest of Spain: A Comparison With SMOS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2763–2769. DOI: https://doi.org/10.1109/JSTARS.2016.2517401
  209. González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., & Wagner, W. (2016). Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources, 96, 339–353. DOI: https://doi.org/10.1016/j.advwatres.2016.08.001
  210. Griesfeller, A., Lahoz, W. A., Jeu, R. A. M. d., Dorigo, W., Haugen, L. E., Svendby, T. M., & Wagner, W. (2016). Evaluation of satellite soil moisture products over Norway using ground-based observations. International Journal of Applied Earth Observation and Geoinformation, 45, 155–164. DOI: https://doi.org/10.1016/j.jag.2015.04.016
  211. Gruber, A., Su, C.-H., Crow, W. T., Zwieback, S., Dorigo, W. A., & Wagner, W. (2016). Estimating error cross-correlations in soil moisture data sets using extended collocation analysis: EXTENDED COLLOCATION ANALYSIS. Journal of Geophysical Research: Atmospheres, 121, 3, 1208–1219. DOI: https://doi.org/10.1002/2015JD024027
  212. Han, M., Lu, H., & Yang, K. (2016). Development of passive microwave retrieval algorithm for estimation of surface soil temperature from AMSR-E data. IEEE, 1671–1674. DOI: https://doi.org/10.1109/IGARSS.2016.7729427
  213. Kędzior, M., & Zawadzki, J. (2016). Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma, 283, 21–31. DOI: https://doi.org/10.1016/j.geoderma.2016.07.023
  214. Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63. DOI: https://doi.org/10.1016/j.rse.2016.02.042
  215. Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63. DOI: http://doi.org/10.1016/j.rse.2016.02.042
  216. Kim, S., Parinussa, R., Liu, Y., Johnson, F., & Sharma, A. (2016). Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach. Remote Sensing, 8, 6, 518. DOI: https://doi.org/10.3390/rs8060518
  217. Koch, F., Schlenz, F., Prasch, M., Appel, F., Ruf, T., & Mauser, W. (2016). Soil Moisture Retrieval Based on GPS Signal Strength Attenuation. Water, 8, 7, 276. DOI: https://doi.org/10.3390/w8070276
  218. Lee, J. H. (2016). The consecutive dry days to trigger rainfall over West Africa. Journal of Hydrology. DOI: https://doi.org/10.1016/j.jhydrol.2016.06.003
  219. Leng, P., Song, X., Duan, S.-B., & Li, Z.-L. (2016). Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network. International Journal of Remote Sensing, 37, 24, 5902–5917. DOI: https://doi.org/10.1080/01431161.2016.1253896
  220. Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Férnandez-Prieto, D., … Verhoest, N. E. C. (2016). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussions, 1–36. DOI: https://doi.org/10.5194/gmd-2016-162
  221. Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., & Verhoest, N. E. C. (2016). Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. International Journal of Applied Earth Observation and Geoinformation, 48, 146–162. DOI: https://doi.org/10.1016/j.jag.2015.09.012
  222. McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., & Verdin, J. P. (2016). Evaluating ESA CCI soil moisture in East Africa. International Journal of Applied Earth Observation and Geoinformation, 48, 96–109. DOI: https://doi.org/10.1016/j.jag.2016.01.001
  223. Nair, A., & Indu, J. (2016). Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture. Remote Sensing, 8, 12, 976. DOI: https://doi.org/10.3390/rs8120976
  224. Orth, R., Dutra, E., & Pappenberger, F. (2016). Improving Weather Predictability by Including Land Surface Model Parameter Uncertainty. Monthly Weather Review, 144, 4, 1551–1569. DOI: https://doi.org/10.1175/MWR-D-15-0283.1
  225. Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., & Camps, A. (2016). Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations. Remote Sensing, 8, 7, 587. DOI: https://doi.org/10.3390/rs8070587
  226. Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986. DOI: http://doi.org/10.1007/s11269-016-1263-4
  227. Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986. DOI: https://doi.org/10.1007/s11269-016-1263-4
  228. Parinussa, R., de Jeu, R., van der Schalie, R., Crow, W., Lei, F., & Holmes, T. (2016). A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input. Climate, 4, 4, 50. DOI: https://doi.org/10.3390/cli4040050
  229. Piles, M., Petropoulos, G. P., Sánchez, N., González-Zamora, Á., & Ireland, G. (2016). Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180, 403–417. DOI: https://doi.org/10.1016/j.rse.2016.02.048
  230. Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., … Pulliainen, J. (2016). SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment, 180, 346–360. DOI: https://doi.org/10.1016/j.rse.2016.01.012
  231. Santi, E., Paloscia, S., Pettinato, S., Brocca, L., & Ciabatta, L. (2016). Robust Assessment of an Operational Algorithm for the Retrieval of Soil Moisture From AMSR-E Data in Central Italy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2478–2492. DOI: https://doi.org/10.1109/JSTARS.2016.2575361
  232. Santi, E., Paloscia, S., Pettinato, S., & Fontanelli, G. (2016). Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International Journal of Applied Earth Observation and Geoinformation, 48, 61–73. DOI: https://doi.org/10.1016/j.jag.2015.08.002
  233. Schalie, R. va. der, Kerr, Y. H., Wigneron, J. P., Rodríguez-Fernández, N. J., Al-Yaari, A., & Jeu, R. A. M. d. (2016). Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model. International Journal of Applied Earth Observation and Geoinformation, 45, 125–134. DOI: https://doi.org/10.1016/j.jag.2015.08.005
  234. Scholze, M., Kaminski, T., Knorr, W., Blessing, S., Vossbeck, M., Grant, J. P., & Scipal, K. (2016). Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sensing of Environment, 180, 334–345. DOI: https://doi.org/10.1016/j.rse.2016.02.058
  235. Shin, Y., Lim, K., Park, K., & Jung, Y. (2016). Development of Dynamic Ground Water Data Assimilation for Quantifying Soil Hydraulic Properties from Remotely Sensed Soil Moisture. Water, 8, 8, 311. DOI: https://doi.org/10.3390/w8070311
  236. Su, C.-H., Ryu, D., Dorigo, W., Zwieback, S., Gruber, A., Albergel, C., … Wagner, W. (2016). Homogeneity of a global multisatellite soil moisture climate data record: HOMOGENEITY OF SOIL MOISTURE CDR. Geophysical Research Letters.. DOI: https://doi.org/10.1002/2016GL070458
  237. Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., … Huang, J. (2016). Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 218–219, 288–297. DOI: https://doi.org/10.1016/j.agrformet.2016.01.003
  238. Wu, Q., Liu, H., Wang, L., & Deng, C. (2016). Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 45, 187–199. DOI: https://doi.org/10.1016/j.jag.2015.10.011
  239. Zawadzki, J., & Kędzior, M. (2016). Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data. International Journal of Applied Earth Observation and Geoinformation, 45, 110–124. DOI: https://doi.org/10.1016/j.jag.2015.03.005
  240. Zeng, J., Chen, K.-S., Bi, H., & Chen, Q. (2016). A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Transactions on Geoscience and Remote Sensing, 54, 8, 4929–4940. DOI: https://doi.org/10.1109/TGRS.2016.2553085
  241. Zhang, D., Madsen, H., Ridler, M. E., Kidmose, J., Jensen, K. H., & Refsgaard, J. C. (2016). Multivariate hydrological data assimilation of soil moisture and groundwater head. Hydrology and Earth System Sciences, 20, 10, 4341–4357. DOI: https://doi.org/10.5194/hess-20-4341-2016
  242. Zhao, L., Yang, Z.-L., & Hoar, T. J. (2016). Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4–RTM–DART System. Journal of Hydrometeorology, 17, 9, 2431–2454. DOI: https://doi.org/10.1175/JHM-D-15-0218.1
  243. Zwieback, S., Su, C.-H., Gruber, A., Dorigo, W. A., & Wagner, W. (2016). The Impact of Quadratic Nonlinear Relations between Soil Moisture Products on Uncertainty Estimates from Triple Collocation Analysis and Two Quadratic Extensions. Journal of Hydrometeorology, 17, 6, 1725–1743. DOI: https://doi.org/10.1175/JHM-D-15-0213.1
  244. Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., … Vitart, F. (2015). ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19, 1, 389–407. DOI: http://doi.org/10.5194/hess-19-389-2015
  245. Boussetta, S., Balsamo, G., Dutra, E., Beljaars, A., & Albergel, C. (2015). Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction. Remote Sensing of Environment, 163, -8, 111–126. DOI: http://doi.org/10.1016/j.rse.2015.03.009
  246. Brocca, L., Massari, C., Ciabatta, L., Moramarco, T., Penna, D., Zuecco, G., … Martínez-Fernández, J. (2015). Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of the SM2RAIN algorithm. Journal of Hydrology and Hydromechanics, 63, 3. DOI: http://doi.org/10.1515/johh-2015-0016
  247. Calvet, J.-C., Fritz, N., Berne, C., Piguet, B., Maurel, W., & Meurey, C. (2015). Impact of gravels and organic matter on the thermal properties of grassland soils in southern France. SOIL Discussions, 2, 1, 737–765. DOI: http://doi.org/10.5194/soild-2-737-2015
  248. Cammalleri, C., Micale, F., & Vogt, J. (2015). On the value of combining different modelled soil moisture products for European drought monitoring. Journal of Hydrology, 525, 547–558. DOI: http://doi.org/10.1016/j.jhydrol.2015.04.021
  249. Chappell, A., Weaver, J., Purohit, S., Smith, W., Schuchardt, K., West, P., … Fox, P. (2015). Enhancing the impact of science data toward data discovery and reuse. IEEE, 271–277. DOI: http://doi.org/10.1109/ICIS.2015.7166605
  250. Coopersmith, E. J., Cosh, M. H., Bindlish, R., & Bell, J. (2015). Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN). Advances in Water Resources, 85, 79–85. DOI: http://doi.org/10.1016/j.advwatres.2015.09.003
  251. Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew, A., … Kidd, R. (2015). Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 162, 380–395. DOI: http://doi.org/10.1016/j.rse.2014.07.023
  252. Fernandez-Moran, R., Wigneron, J.-P., Lopez-Baeza, E., Al-Yaari, A., Bircher, S., Coll-Pajaron, A., … Kerr, Y. (2015). Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe . IEEE, 5182–5185. DOI: http://doi.org/10.1109/IGARSS.2015.7327001
  253. Gonzalez-Zamora, A., Sanchez, N., Martinez-Fernandez, J., & Gumuzzio, A. (2015). Validation of SMOS and Aquarius soil moisture using two in situ networks in Spain. IEEE, 4738–4741. DOI: http://doi.org/10.1109/IGARSS.2015.7326888
  254. Hottenstein, J. D., Ponce-Campos, G. E., Moguel-Yanes, J., & Moran, M. S. (2015). Impact of Varying Storm Intensity and Consecutive Dry Days on Grassland Soil Moisture. Journal of Hydrometeorology, 16, 1, 106–117. DOI: http://doi.org/10.1175/JHM-D-14-0057.1
  255. Kim, S., Liu, Y. Y., Johnson, F. M., Parinussa, R. M., & Sharma, A. (2015). A global comparison of alternate AMSR2 soil moisture products: Why do they differ?. Remote Sensing of Environment, 161, 43–62. DOI: http://doi.org/10.1016/j.rse.2015.02.002
  256. Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., & Sharma, A. (2015). A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation: IMPROVING AMSR2 SOIL MOISTURE RETRIEVALS. Geophysical Research Letters, 42, 16, 6662–6670. DOI: http://doi.org/10.1002/2015GL064981
  257. Kornelsen, K. C., & Coulibaly, P. (2015). Reducing multiplicative bias of satellite soil moisture retrievals. Remote Sensing of Environment, 165, 109–122. DOI: doi.org/10.1016/j.rse.2015.04.031
  258. Lee, J., & Im, J. (2015). A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles. Remote Sensing, 7, 12, 16045–16061. DOI: http://doi.org/10.3390/rs71215824
  259. Leng, P., Song, X., Li, Z.-L., Wang, Y., & Wang, R. (2015). Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area. Remote Sensing, 7, 4, 4112–4138. DOI: http://doi.org/10.3390/rs70404112
  260. Nicolai-Shaw, N., Hirschi, M., Mittelbach, H., & Seneviratne, S. I. (2015). Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data: SPATIAL REPRESENTATIVENESS OF SOIL MOISTURE. Journal of Geophysical Research: Atmospheres, 120, 19, 9955–9964. DOI: http://doi.org/10.1002/2015JD023305
  261. Parinussa, R. M., Holmes, T. R. H., Wanders, N., Dorigo, W. A., & de Jeu, R. A. M. (2015). A Preliminary Study toward Consistent Soil Moisture from AMSR2. Journal of Hydrometeorology, 16, 2, 932–947. DOI: http://doi.org/10.1175/JHM-D-13-0200.1
  262. Pierdicca, N., Fascetti, F., Pulvirenti, L., Crapolicchio, R., & Munoz-Sabater, J. (2015). Quadruple Collocation Analysis for Soil Moisture Product Assessment. IEEE Geoscience and Remote Sensing Letters, 12, 8, 1595–1599. DOI: http://doi.org/10.1109/LGRS.2015.2414654
  263. Pierdicca, N., Fascetti, F., Pulvirenti, L., Crapolicchio, R., & Muñoz-Sabater, J. (2015). Analysis of ASCAT, SMOS, in-situ and land model soil moisture as a regionalized variable over Europe and North Africa. Remote Sensing of Environment, 170, 280–289. DOI: http://doi.org/10.1016/j.rse.2015.09.005
  264. Spennemann, P. C., Rivera, J. A., Saulo, A. C., & Penalba, O. C. (2015). A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America. Journal of Hydrometeorology, 16, 1, 158–171. DOI: http://doi.org/10.1175/JHM-D-13-0190.1
  265. Su, C.-H., Narsey, S. Y., Gruber, A., Xaver, A., Chung, D., Ryu, D., & Wagner, W. (2015). Evaluation of post-retrieval de-noising of active and passive microwave satellite soil moisture. Remote Sensing of Environment, 163, 127–139. DOI: http://doi.org/10.1016/j.rse.2015.03.010
  266. Zwieback, S., Paulik, C., & Wagner, W. (2015). Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval. Remote Sensing, 7, 3, 3206–3231. DOI: http://doi.org/10.3390/rs70303206
  267. Angevine, W. M., Bazile, E., Legain, D., and Pino, D. (2014). Land surface spinup for episodic modeling. Atmos. Chem. Phys., 14, 8165-8172. DOI: doi:10.5194/acp-14-8165-2014
  268. Albergel, C., Dorigo, W.,Balsamo, G., Muñoz-Sabater, J., de Rosnay, P., Isaksen, L., Brocca, L., de Jeu,R., Wagner, W. (2013). Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sensing of Environment, 138, 77-89. DOI: doi: 10.1016/j.rse.2013.07.009
  269. Albergel, C., Dorigo, W., Reichle, R.H.,Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., Isaksen, L., de Jeu, R., Wagner,W. (2013). Skill and global trend analysis ofsoil moisture from reanalyses and microwave remote sensing. Journal of Hydrometeorology, 14, 1259-1277. DOI: doi:10.1175/JHM-D-12-0161.1
  270. Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L., & Muñoz-Sabater, J. (2012). Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. Journal of Hydrometeorology, 13, 1442-1460
  271. Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., & Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 118, 215-226
  272. Albergel, C.., G. Balsamo, P. de Rosnay, J. Muñoz-Sabater, and S. Boussetta, (2012). A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data. Hydrol. Earth Syst. Sci., 16, 3607-3620
  273. Collow, T.W., Robock, A., Basara, J.B., Illston, B.G. (2012). Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. Journal of Geophysical Research D: Atmospheres, 117, 9
  274. dall''Amico, J.T.; Schlenz, F.; Loew, A.; Mauser, W. (2012). First Results of SMOS Soil Moisture Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1507-1516
  275. Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., De Jeu, R. A. M., Wagner, W., McCabe, M. F., . . . Van Dijk, A. I. J. M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123, 280-297
  276. Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., . . . Zhou, X. H. (2012). A framework for benchmarking land models. Biogeosciences, 9, 10, 3857-3874
  277. Mecklenburg, S., Drusch, M., Kerr, Y. H., Font, J., Martin-Neira, M., Delwart, S., . . . Crapolicchio, R. (2012). ESA's soil moisture and ocean salinity mission: Mission performance and operations. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1354-1366
  278. Pan, M., Sahoo, A.K., Wood, E.F., Al Bitar, A., Leroux, D., Kerr, Y.H. (2012). An initial assessment of SMOS derived soil moisture over the continental United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 6211458, 1448-1457
  279. Parrens, M., Zakharova, E., Lafont, S., Calvet, J.-C., Kerr, Y., Wagner, W., and Wigneron, J.-P. (2012). Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci., 16, 423-440. DOI: doi:10.5194/hess-16-423-2012
  280. Schlenz, F.; dall''Amico, J.T.; Loew, A.; Mauser, W. (2012). Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1517-1529
  281. Skierucha, W., Wilczek, A., & Szypłowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26, 2, 187-197
  282. Van doninck, J., Peters, J., Lievens, H., De Baets, B., and Verhoest, N. E. C. (2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide Swath time series. Hydrol. Earth Syst. Sci., 16, 773-786
  283. Wanders, N., Karssenberg, D., Bierkens, M., Parinussa, R., de Jeu, R., van Dam, J., & de Jong, S. (2012). Observation uncertainty of satellite soil moisture products determined with physically-based modeling. Remote Sensing of Environment, 127, 341-356
  284. Brocca L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M. (2011). Soil Moisture estimation through ASCAT ans AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115, 3390-3408
  285. Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P. (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15, 425-436. DOI: doi:10.5194/hess-15-425-2011