Filter Set

    Articles making use of the ISMN:

  1. Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55, 324-344.
  2. Adamolekun, O. (2019). Field validation of proximal sensors on a typical Prairie field.
  3. Afshar, M., Yilmaz, M., & Crow, W. (2019). Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products. Water Resources Research, 55, 7804-7825.
  4. Albergel, C., Zheng, Y., Bonan, B., Dutra, E., Rodríguez-Fernández, N., Munier, S., Draper, C., de Rosnay, P., Muñoz-Sabater, J., Balsamo, G., Fairbairn, D., Meurey, C., & Calvet, J.-C. (2019). Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrol. Earth Syst. Sci. Discuss. In review.
  5. Almagbile, A., Zeitoun, M., Hazaymeh, K., Sammour, H. A., & Sababha, N. (2019). Statistical analysis of estimated and observed soil moisture in sub-humid climate in north-western Jordan. Environmental monitoring and assessment, 191, 96.
  6. Al-Yaari, A., Ducharne, A., Cheruy, F., Crow, W.T., & Wigneron, J.P. (2019). Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States. Sci Rep, 9, 1657.
  7. Al-Yaari, A., Wigneron, J.P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.H., & De Lannoy, G. (2019). Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements. Remote Sensing of Environment, 224, 289-303.
  8. Araghi, A., Adamowski, J., Martinez, C.J., & Olesen, J.E. (2019). Projections of future soil temperature in northeast Iran. Geoderma, 349, 11-24.
  9. Ardeshir Ebtehaj and Rafael L. Bras (2019). A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in L-band. Remote Sensing of Environment, 233, 111346.
  10. Arora, B., Dwivedi, D., Faybishenko, B., Jana, R. B., & Wainwright, H. M. (2019). Understanding and predicting vadose zone processes. Reviews in Mineralogy and Geochemistry, 85, 303-328.
  11. Asmuß, T., Bechtold, M., & Tiemeyer, B. (2019). On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sensing 2019, 11, 1659.
  12. Babaeian, E., Sadeghi, M., Jones, S.B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground. Proximal and Satellite Remote Sensing of Soil Moisture. Reviews of Geophysics.
  13. Baczyk, M. K., Gromek, A., Kulpa, K., Gurdak, R., & Grzybowski, P. (2019). Neural Network-Based Soil Moisture Estimation Using Satellite SAR Data. 2019 Signal Processing Symposium (SPSympo).
  14. Baik, J., Zohaib, M., Kim, U., Aadil, M., & Choi, M. (2019). Agricultural drought assessment based on multiple soil moisture products. Journal of arid environments, 167, 43-55.
  15. Bai, L., Long, D., & Yan, L. (2019). Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land. Water Resources Research, 55, 1105-1128.
  16. Bai, L., Lv, X., & Li, X. (2019). Evaluation of Two SMAP Soil Moisture Retrievals Using Modeled-and Ground-Based Measurements. Remote Sensing 2019, 11, 2891.
  17. Baldwin, D., Manfreda, S., Lin, H., & Smithwick, E. A. (2019). Estimating Root Zone Soil Moisture Across the Eastern United States with Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sensing 2019, 11, 2013.
  18. Barbosa, L. R., Lira, N. B. d., Coelho, V. H. R., Silans, A. M. B. P. d., Gadêlha, A. N., & Almeida, C. d. N. (2019). Stability of Soil Moisture Patterns Retrieved at Different Temporal Resolutions in a Tropical Watershed. Revista Brasileira de Ciência do Solo, 43.
  19. Berthelin, R., Rinderer, M., Andreo, B., Baker, A., Kilian, D., Leonhardt, G., Lotz, A., Lichtenwoehrer, K., Mudarra, M., Padilla, I. Y., Pantoja Agreda, F., Rosolem, R., Vale, A., & Hartmann, A. (2019). A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe. Geosci. Instrum. Method. Data Syst., 9, 11–23.
  20. Blyverket, J. (2019). Land Surface Data Assimilation of Satellite Derived Surface Soil Moisture: Towards an Integrated Representation of the Arctic Hydrological Cycle.
  21. Blyverket, J., Hamer, P., Bertino, L., Albergel, C., Fairbairn, D., & Lahoz, W. (2019). An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US. Remote Sensing, 11.
  22. Blyverket, J., Hamer, P. D., Bertino, L., Albergel, C., Fairbairn, D., & Lahoz, W. A. (2019). Improving soil moisture estimates over the contiguous US using satellite retrievals and ensemble based data assimilation techniques. Preprints.
  23. Caldwell, T. G., Bongiovanni, T., Cosh, M. H., Jackson, T. J., Colliander, A., Abolt, C. J., et al. (2019). The Texas Soil Observation Network: A Comprehensive Soil Moisture Dataset for Remote Sensing and Land Surface Model Validation. Vadose Zone Journal, 18.
  24. Carrera, M. L., Bilodeau, B., Bélair, S., Abrahamowicz, M., Russell, A., & Wang, X. (2019). Assimilation of passive L-band microwave brightness temperatures in the Canadian Land Data Assimilation System: Impacts on short-range warm season Numerical Weather Prediction. Journal of Hydrometeorology, 20, 1053-1079.
  25. Chen, Y., Sun, L., Wang, W., & Pei, Z. (2019). Application of Sentinel 2 data for drought monitoring in Texas, America. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics).
  26. Chipade, R. A. (2019). Soil moisture retrieval using indigenously developed NavIC-GPS-SBAS receiver. Coordinates.
  27. Chuchón Prado, R. (2019). Láminas de riego en el cultivo de papa (Solanum tuberosum L.) variedad “unica” mediante riego por goteo en La Molina. Universidad Nacional Agraria La Molina.
  28. Crow, W. T. (2019). Utility of soil moisture data products for natural disaster applications. Elsevier Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment.
  29. Dasgupta, K., Das, K., & Padmanaban, M. (2019). Soil Moisture Evaluation Using Machine Learning Techniques on Synthetic Aperture Radar (SAR) And Land Surface Model. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.
  30. Das, K., Singh, J., & Hazra, J. (2019). Comparison of Smap, Gldas and Simulated Soil Moisture Datasets Over A Malaysian Region. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.
  31. Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A., Yueh, S., et al. (2019). The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 233, 111380.
  32. Deng, K.A.K., Lamine, S., Pavlides, A., Petropoulos, G.P., Bao, Y., Srivastava, P.K., & Guan, Y. (2019). Large scale operational soil moisture mapping from passive MW radiometry: SMOS product evaluation in Europe & USA. International Journal of Applied Earth Observation and Geoinformation, 80, 206-217.
  33. Deng, K., Lamine, S., Pavlides, A., Petropoulos, G., Srivastava, P., Bao, Y., Hristopulos, D., & Anagnostopoulos, V. (2019). Operational Soil Moisture from ASCAT in Support of Water Resources Management. Remote Sensing, 11.
  34. Deng, Y., Wang, S., Bai, X., Wu, L., Cao, Y., Li, H., (2019). Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations. Hydrological Processes, 34, 836– 851.
  35. Di, Chongli and Wang, Tiejun and Istanbulluoglu, Erkan and Jayawardena, A. and Li, Si-Liang and Chen, Xi (2019). Deterministic chaotic dynamics in soil moisture across Nebraska. Journal of Hydrology, 578. 10.1016/j.jhydrol.2019.124048
  36. Draper, Clara and Reichle, Rolf H. (2019). Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses. Monthly Weather Review, 147, 6, 2163-2188. 10.1175/MWR-D-18-0393.1
  37. Eroglu, Orhan and Kurum, Mehmet and Boyd, Dylan and Gurbuz, Ali Cafer (2019). High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sensing, 11, 19, 2272. 10.3390/rs11192272
  38. Fairbairn, David and de Rosnay, Patricia and Browne, Philip A. (2019). The New Stand-Alone Surface Analysis at ECMWF: Implications for Land–Atmosphere DA Coupling. Journal of Hydrometeorology, 20, 10, 2023-2042. 10.1175/JHM-D-19-0074.1
  39. Fairbairn, David and de Rosnay, Patricia and Browne, Philip and Albergel, Clement and Isaksen, Lars (2019). H SAF root-zone soil moisture products from ASCAT assimilation.
  40. Fan, Dong and Wu, Hua and Dong, Guotao and Jiang, Xiaoguang and Xue, Huazhu (2019). A Temporal Disaggregation Approach for TRMM Monthly Precipitation Products Using AMSR2 Soil Moisture Data. Remote Sensing, 11, 24, 2962. 10.3390/rs11242962
  41. Fang, Bin and Lakshmi, Venkat and Bindlish, Rajat and Jackson, Thomas J and Liu, Pang-Wei (2019). Downscaling and Validation of SMAP Radiometer Soil Moisture in CONUS. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 6194-6197. 10.1109/IGARSS.2019.8897943
  42. Ford, Trent W. and Quiring, Steven M. (2019). Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture With a Focus on Drought Monitoring. Water Resources Research, 55, 2, 1565-1582. 10.1029/2018WR024039
  43. Fu, Haoyang and Zhou, Tingting and Sun, Chenglin (2019). Evaluation and Analysis of AMSR2 and FY3B Soil Moisture Products by an In Situ Network in Cropland on Pixel Scale in the Northeast of China. Remote Sensing, 11, 7, 868. 10.3390/rs11070868
  44. Ghilain, Nicolas and Arboleda, Alirio and Batelaan, Okke and Ardö, Jonas and Trigo, Isabel and Barrios, Jose-Miguel and Gellens-Meulenberghs, Francoise (2019). A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation. Remote Sensing, 11, 17, 1968. 10.3390/rs11171968
  45. Gruber, A., De Lannoy, G., & Crow, W. (2019). A Monte Carlo based adaptive Kalman filtering framework for soil moisture data assimilation. Remote Sensing of Environment, 228, 105-114.
  46. Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., & Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth System Science Data, 11, 717-739.
  47. Gu, Y., Gao, M., & Zhao, G. (2019). Earth Observation Payloads and Data Applications of Tiangong-2 Space Laboratory: Technology, Method and Application. Springer.
  48. Hongtao, J., Huanfeng, S., Xinghua, L., Chao, Z., Huiqin, L., & Fangni, L. (2019). Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model. Remote Sensing of Environment, 231.
  49. Hu, T., Zhao, T., Zhao, K., & Shi, J. (2019). A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data. International Journal of Remote Sensing, 40, 6993-7016.
  50. Kang, C.S., Kanniah, K.D., & Kerr, Y.H. (2019). Calibration of SMOS Soil Moisture Retrieval Algorithm: A Case of Tropical Site in Malaysia. IEEE Transactions on Geoscience and Remote Sensing, 57, 3827-3839.
  51. Kiyoung, K., Sungwon, J., & Yeongil, L. (2019). A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system. Journal of Korea Water Resources Association, 52, 51-60.
  52. Kovács, K.Z., Hemment, D., Woods, M., van der Velden, N.K., Xaver, A., Giesen, R.H., Burton, V.J., Garrett, N.L., Zappa, L., Long, D., Dobos, E., & Skalsky, R. (2019). Citizen observatory based soil moisture monitoring – the GROW example. Hungarian Geographical Bulletin, 68, 119-139.
  53. Kumar, S., Newman, M., Wang, Y., & Livneh, B. (2019). Potential Reemergence of Seasonal Soil Moisture Anomalies in North America. Journal of Climate, 32, 2707-2734.
  54. Liao, W., Wang, D., Wang, G., Xia, Y., & Liu, X. (2019). Quality Control and Evaluation of the Observed Daily Data in the North American Soil Moisture Database. Journal of Meteorological Research, 33, 501-518.
  55. Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., Xu, C., Zhang, Y., & Zhang, R. (2019). UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 174, 478-489.
  56. Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M.H., & Wang, W. (2019). Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231.
  57. Myeni, L., Moeletsi, M.E., & Clulow, A.D. (2019). Present status of soil moisture estimation over the African continent. Journal of Hydrology: Regional Studies, 21, 14-24.
  58. Nguyen, H.H., Jeong, J., & Choi, M. (2019). Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors. Journal of Hydrology, 571, 679-696.
  59. Ochsner, T.E., Linde, E., Haffner, M., & Dong, J. (2019). Mesoscale Soil Moisture Patterns Revealed Using a Sparse In Situ Network and Regression Kriging. Water Resources Research.
  60. Pal, M., & Maity, R. (2019). Development of a spatially-varying Statistical Soil Moisture Profile model by coupling memory and forcing using hydrologic soil groups. Journal of Hydrology, 570, 141-155.
  61. Quintana Seguí, Pere and Barella-Ortiz, Anaïs and Regueiro-Sanfiz, Sabela and Miguez-Macho, Gonzalo (2019). The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets. Water Resources Management. 10.1007/s11269-018-2160-9
  62. Rodríguez-Fernández, N., de Rosnay, P., Albergel, C., Richaume, P., Aires, F., Prigent, C., & Kerr, Y. (2019). SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact. Remote Sensing, 11.
  63. Ropelewski, C. F., Arkin, P. A.: (2019). Climate Analysis. Cambridge University Press, ISBN 978-0-521-89616.
  64. Sadeghi, M., Tuller, M., Warrick, A.W., Babaeian, E., Parajuli, K., Gohardoust, M.R., & Jones, S.B. (2019). An analytical model for estimation of land surface net water flux from near-surface soil moisture observations. Journal of Hydrology, 570, 26-37.
  65. Sun, H., Cai, C., Liu, H., & Yang, B. (2019). Microwave and Meteorological Fusion: A method of Spatial Downscaling of Remotely Sensed Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1107-1119.
  66. Tian, J., Zhang, B., He, C., Han, Z., Bogena, H.R., & Huisman, J.A. (2019). Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed. Northwest China. Agricultural and Forest Meteorology, 271, 225-239.
  67. Tian, S., Renzullo, L.J., van Dijk, A.I.J.M., Tregoning, P., & Walker, J.P. (2019). Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrology and Earth System Sciences, 23, 1067-1081.
  68. Wang, C., Wang, Z., Kong, Y., Zhang, F., Yang, K., & Zhang, T. (2019). Most of the Northern Hemisphere Permafrost Remains under Climate Change. Sci Rep, 9, 3295.
  69. Wang, L., He, B., Bai, X., Xing, M. (2019). Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data. Photogrammetric Engineering & Remote Sensing, 85, 7, 43-54(12).
  70. Wang, Q., van der Velde, R., Ferrazzoli, P., Chen, X., Bai, X., & Su, Z. (2019). Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations. International Journal of Applied Earth Observation and Geoinformation, 77, 108-118.
  71. Wang, Y., Yang, J., Chen, Y., Fang, G., Duan, W., Li, Y., & De Maeyer, P. (2019). Quantifying the Effects of Climate and Vegetation on Soil Moisture in an Arid Area. China. Water, 11.
  72. Xia, Y., Hao, Z., Shi, C., Li, Y., Meng, J., Xu, T., Wu, X., & Zhang, B. (2019). Regional and Global Land Data Assimilation Systems Innovations, Challenges, and Prospects. Journal of Meteorological Research, 33, 159-189.
  73. Zaussinger, F., Dorigo, W., Gruber, A., Tarpanelli, A., Filippucci, P., & Brocca, L. (2019). Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrology and Earth System Sciences, 23, 897-923.
  74. Zeng, L., Hu, S., Xiang, D., Zhang, X., Li, D., Li, L., & Zhang, T. (2019). Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method. Remote Sensing, 11.
  75. Zhang, Q., Fan, K., Singh, V.P., Song, C., Xu, C.Y., & Sun, P. (2019). Is Himalayan-Tibetan Plateau "drying"? Historical estimations and future trends of surface soil moisture. Sci Total Environ, 658, 374-384.
  76. Zhang, R., Kim, S., & Sharma, A. (2019). A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sensing of Environment, 223, 82-94.
  77. Zhang, S., Meurey, C., & Calvet, J.-C. (2019). Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations. Atmospheric Chemistry and Physics, 19, 5005-5020.
  78. Zhu, L., Wang, H., Tong, C., Liu, W., & Du, B. (2019). Evaluation of ESA Active, Passive and Combined Soil Moisture Products Using Upscaled Ground Measurements. Sensors (Basel), 19.
  79. Al-Yaari, A., Dayau, S., Chipeaux, C., Aluome, C., Kruszewski, A., Loustau, D., & Wigneron, J.P. (2018). The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France. Remote Sensing, 10.
  80. Bao, Y., Lin, L., Wu, S., Kwal Deng, K.A., & Petropoulos, G.P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76-85.
  81. Belfort, B., Toloni, I., Ackerer, P., Cotel, S., Viville, D., & Lehmann, F. (2018). Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration. Geosciences, 8.
  82. Benninga, H.-J.F., Carranza, C.D.U., Pezij, M., van Santen, P., van der Ploeg, M.J., Augustijn, D.C.M., & van der Velde, R. (2018). The Raam regional soil moisture monitoring network in the Netherlands. Earth System Science Data, 10, 61-79.
  83. Bogena, H.R., Montzka, C., Huisman, J.A., Graf, A., Schmidt, M., Stockinger, M., von Hebel, C., Hendricks-Franssen, H.J., van der Kruk, J., Tappe, W., Lücke, A., Baatz, R., Bol, R., Groh, J., Pütz, T., Jakobi, J., Kunkel, R., Sorg, J., & Vereecken, H. (2018). The TERENO-Rur Hydrological Observatory: A Multiscale Multi-Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone Journal, 17.
  84. Cassardo, C., Park, S., O, S., & Galli, M. (2018). Projected Changes in Soil Temperature and Surface Energy Budget Components over the Alps and Northern Italy. Water, 10.
  85. Dabrowska-Zielinska, K., Musial, J., Malinska, A., Budzynska, M., Gurdak, R., Kiryla, W., Bartold, M., & Grzybowski, P. (2018). Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sensing, 10.
  86. Dirmeyer, P.A., Chen, L., Wu, J., Shin, C.S., Huang, B., Cash, B.A., Bosilovich, M.G., Mahanama, S., Koster, R.D., Santanello, J.A., Ek, M.B., Balsamo, G., Dutra, E., & Lawrence, D.M. (2018). Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations. J Hydrometeorol, 19, 375-392.
  87. Ebrahimi, M., Alavipanah, S.K., Hamzeh, S., Amiraslani, F., Neysani Samany, N., & Wigneron, J.-P. (2018). Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions. Journal of Hydrology, 557, 740-752.
  88. Esposito, G., Matano, F., & Scepi, G. (2018). Analysis of Increasing Flash Flood Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic Area. Frontiers in Earth Science, 6, Italy..
  89. Fang, B., Lakshmi, V., Bindlish, R., & Jackson, T. (2018). AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data. Remote Sensing, 10.
  90. Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., & Jäger, M. (2018). Synergies for Soil Moisture Retrieval Across Scales From Airborne Polarimetric SAR, Cosmic Ray Neutron Roving, and an In Situ Sensor Network. Water Resources Research, 54, 9364-9383.
  91. Franz, T., Mengistu, M., Everson, C., & Vather, T. (2018). Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture. South African Journal of Science, 114.
  92. González-Zamora, Á., Sánchez, N., Pablos, M., & Martínez-Fernández, J. (2018). CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sensing of Environment.
  93. Greifeneder, F., Khamala, E., Sendabo, D., Wagner, W., Zebisch, M., Farah, H., & Notarnicola, C. (2018). Detection of soil moisture anomalies based on Sentinel-1. Physics and Chemistry of the Earth Parts A/B/C.
  94. Gruber, A., Crow, W.T., & Dorigo, W.A. (2018). Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain. Water Resources Research, 54, 1353-1367.
  95. Gumbricht, T. (2018). Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates. Remote Sensing, 10.
  96. Högström, E., Heim, B., Bartsch, A., Bergstedt, H., & Pointner, G. (2018). Evaluation of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments. Journal of Geophysical Research: Earth Surface, 123, 3190-3205.
  97. Jeong, J., Cho, S., Baik, J., & Choi, M. (2018). A Study on the Establishment of a Korean Soil Moisture Network (2): Measurement of Intermediate-Scale Soil Moisture Using a Cosmic-Ray Sensor. Journal of the Korean Society of Hazard Mitigation, 18, 83-91.
  98. Kang, J., Jin, R., Li, X., Zhang, Y., & Zhu, Z. (2018). Spatial Upscaling of Sparse Soil Moisture Observations Based on Ridge Regression. Remote Sensing, 10.
  99. Kim, H., Parinussa, R., Konings, A.G., Wagner, W., Cosh, M.H., Lakshmi, V., Zohaib, M., & Choi, M. (2018). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260-275.
  100. Kim, S., Jeong, J., Zohaib, M., & Choi, M. (2018). Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine. Stochastic Environmental Research and Risk Assessment, 32, 3455-3473.
  101. Kolassa, J., Reichle, R.H., Liu, Q., Alemohammad, S.H., Gentine, P., Aida, K., Asanuma, J., Bircher, S., Caldwell, T., Colliander, A., Cosh, M., Collins, C.H., Jackson, T.J., Martinez-Fernandez, J., McNairn, H., Pacheco, A., Thibeault, M., & Walker, J.P. (2018). Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens Environ, 204, 43-59.
  102. Lei, F., Crow, W.T., Holmes, T.R.H., Hain, C., & Anderson, M.C. (2018). Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength. Water Resources Research, 54, 8196-8215.
  103. Lei, F., Crow, W.T., Shen, H., Su, C.-H., Holmes, T.R.H., Parinussa, R.M., & Wang, G. (2018). Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sensing of Environment, 205, 85-99.
  104. Lembrechts, J.J., Nijs, I., & Lenoir, J. (2018). Incorporating microclimate into species distribution models. Ecography.
  105. Li, Y., Li, Y., Yuan, X., Zhang, L., & Sha, S. (2018). Evaluation of Model-Based Soil Moisture Drought Monitoring over Three Key Regions in China. Journal of Applied Meteorology and Climatology, 57, 1989-2004.
  106. Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., & Miralles, D. (2018). Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sensing, 10.
  107. Meng, Q., Zhang, L., Xie, Q., Yao, S., Chen, X., & Zhang, Y. (2018). Combined Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval over Agricultural Areas Using Artificial Neural Network. Advances in Meteorology, 1-11.
  108. Mishra, V., Shah, R., Azhar, S., Shah, H., Modi, P., & Kumar, R. (2018). Reconstruction of droughts in India using multiple land-surface models (1951–2015). Hydrology and Earth System Sciences, 22, 2269-2284.
  109. Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G., & Hornibrook, E.R.C. (2018). Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development, 11, 2009-2032.
  110. Parinussa, R.M., Wang, G., Liu, Y., Lou, D., Hagan, D.F.T., Zhan, M., Su, B., & Jiang, T. (2018). Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People’s Republic of China. International Journal of Remote Sensing, 1-13.
  111. Qin, M., Giménez, D., & Miskewitz, R. (2018). Temporal dynamics of subsurface soil water content estimated from surface measurement using wavelet transform. Journal of Hydrology, 563, 834-850.
  112. Rowlandson, T.L., Berg, A.A., Roy, A., Kim, E., Pardo Lara, R., Powers, J., Lewis, K., Houser, P., McDonald, K., Toose, P., Wu, A., De Marco, E., Derksen, C., Entin, J., Colliander, A., Xu, X., & Mavrovic, A. (2018). Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign. Remote Sensing of Environment, 211, 59-70.
  113. Santi, E., Paloscia, S., Pettinato, S., Brocca, L., Ciabatta, L., & Entekhabi, D. (2018). Integration of microwave data from SMAP and AMSR2 for soil moisture monitoring in Italy. Remote Sensing of Environment, 212, 21-30.
  114. Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., & Karszenbaum, H. (2018). Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. International Journal of Applied Earth Observation and Geoinformation, 64, 96-103.
  115. Stein, S., Eberhard, E., Grosse, M., Helming, K., Hierold, W., Hoffmann, C., Kühnert, T., Liess, M., Russel, D., & S., S. (2018). Report on available soil data for German agricultural areas. -
  116. Tóth, E., Gelybó, G., Dencső, M., Kása, I., Birkás, M., & Horel, Á. (2018). Soil CO 2 Emissions in a Long-Term Tillage Treatment Experiment. Soil Management and Climate Change, 293-307
  117. Um, M.-J., Kim, M., Kim, Y., & Park, D. (2018). Drought Assessment with the Community Land Model for 1951–2010 in East Asia. Sustainability, 10.
  118. van der Schalie, R., de Jeu, R., Parinussa, R., Rodríguez-Fernández, N., Kerr, Y., Al-Yaari, A., Wigneron, J.-P., & Drusch, M. (2018). The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors. Remote Sensing, 10.
  119. Wang, X., Ciais, P., Wang, Y., & Zhu, D. (2018). Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob Chang Biol.
  120. Williamson, M., Rowlandson, T.L., Berg, A.A., Roy, A., Toose, P., Derksen, C., Arnold, L., & Tetlock, E. (2018). L-band radiometry freeze/ thaw validation using air temperature and ground measurements. Remote Sensing Letters, 9, 403-410.
  121. Wu, M., Scholze, M., Voßbeck, M., Kaminski, T., & Hoffmann, G. (2018). Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS. Remote Sensing, 11.
  122. Wu, M., Scholze, M., Voßbeck, M., Kaminski, T., & Hoffmann, G. (2018). Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS. Remote Sensing, 11.
  123. Xu, H., Yuan, Q., Li, T., Shen, H., Zhang, L., & Jiang, H. (2018). Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S. Remote Sensing, 10.
  124. Ye, K., & Lau, N.-C. (2018). Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate. Climate Dynamics.
  125. Zhang, S., Calvet, J.-C., Darrozes, J., Roussel, N., Frappart, F., & Bouhours, G. (2018). Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France. Hydrology and Earth System Sciences, 22, 1931-1946.
  126. Zhao, L., & Yang, Z.-L. (2018). Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation. Remote Sensing of Environment, 216, 13-27.
  127. Abdi, A., Boke-Olén, N., Tenenbaum, D., Tagesson, T., Cappelaere, B., & Ardö, J. (2017). Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data. Remote Sensing, 9.
  128. Afshar, M.H., & Yilmaz, M.T. (2017). The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products. Remote Sensing of Environment, 196, 224-237.
  129. Al-Yaari, A., Wigneron, J.P., Kerr, Y., Rodriguez-Fernandez, N., O'Neill, P.E., Jackson, T.J., De Lannoy, G.J.M., Al Bitar, A., Mialon, A., Richaume, P., Walker, J.P., Mahmoodi, A., & Yueh, S. (2017). Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets. Remote Sensing of Environment, 193, 257-273.
  130. Anoop, S., Maurya, D.K., Rao, P.V.N., & Sekhar, M. (2017). Validation and Comparison of LPRM Retrieved Soil Moisture Using AMSR2 Brightness Temperature at Two Spatial Resolutions in the Indian Region. IEEE Geoscience and Remote Sensing Letters, 14, 1561-1564.
  131. Baguis Pierre, & Emmanuel, R. (2017). Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data. Remote Sensing, 9.
  132. Brocca, L., Crow, W.T., Ciabatta, L., Massari, C., de Rosnay, P., Enenkel, M., Hahn, S., Amarnath, G., Camici, S., Tarpanelli, A., & Wagner, W. (2017). A Review of the Applications of ASCAT Soil Moisture Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2285-2306.
  133. Candy, B., Saunders, R.W., Ghent, D., & Bulgin, C.E. (2017). The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts. Journal of Geophysical Research: Atmospheres, 122, 9783-9802.
  134. Cerlini, P.B., Meniconi, S., & Brunone, B. (2017). Groundwater Supply and Climate Change Management by Means of Global Atmospheric Datasets. Preliminary Results. Procedia Engineering, 186, 420-427.
  135. De Santis, D., & Biondi, D. (2017). A quality assessment of the soil water index by the propagation of ASCAT soil moisture error estimates through an exponential filter. International Journal of Remote Sensing, 39, 232-257.
  136. Dong, J., & Crow, W. (2017). An improved triple collocation analysis algorithm for decomposing auto-correlated and white soil moisture retrieval errors. Journal of Geophysical Research: Atmospheres.
  137. Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., & Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185-215.
  138. Dwevedi, A., Kumar, P., Kumar, P., Kumar, Y., Sharma, Y.K., & Kayastha, A.M. (2017). 15 - Soil sensors: detailed insight into research updates, significance, and future prospects A2 - Grumezescu, Alexandru Mihai. New Pesticides and Soil Sensors. Academic Press, 561-594
  139. Emery, C. (2017). Contribution de la future mission altim´etrique `a large fauch´ee SWOT pour la mod´elisation hydrologique `a grande ´echelle. -
  140. Fernandez-Moran, R., Wigneron, J.P., De Lannoy, G., Lopez-Baeza, E., Parrens, M., Mialon, A., Mahmoodi, A., Al-Yaari, A., Bircher, S., Al Bitar, A., Richaume, P., & Kerr, Y. (2017). A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm. International Journal of Applied Earth Observation and Geoinformation, 62, 27-38.
  141. Gasch, C.K., Brown, D.J., Brooks, E.S., Yourek, M., Poggio, M., Cobos, D.R., & Campbell, C.S. (2017). A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Computers and Electronics in Agriculture, 137, 29-40.
  142. Gruber, A., Dorigo, W.A., Crow, W., & Wagner, W. (2017). Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing, 55, 6780-6792.
  143. Hartmann, A., Gleeson, T., Wada, Y., & Wagener, T. (2017). Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc Natl Acad Sci U S A, 114, 2842-2847.
  144. Ji, P., Yuan, X., & Liang, X.-Z. (2017). Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling?. Journal of Geophysical Research: Atmospheres.
  145. Jung, C., Lee, Y., Cho, Y., & Kim, S. (2017). A Study of Spatial Soil Moisture Estimation Using a Multiple Linear Regression Model and MODIS Land Surface Temperature Data Corrected by Conditional Merging. Remote Sensing, 9.
  146. Kapilaratne, R.G.C.J., & Lu, M. (2017). Automated general temperature correction method for dielectric soil moisture sensors. Journal of Hydrology, 551, 203-216.
  147. Karthikeyan, L., Pan, M., Wanders, N., Kumar, D.N., & Wood, E.F. (2017). Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Advances in Water Resources, 109, 236-252.
  148. Kim, H., Parinussa, R., Konings, A.G., Wagner, W., Cosh, M.H., Lakshmi, V., Zohaib, M., Choi, M. (2017). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260-275.
  149. Kim, S., Balakrishnan, K., Liu, Y., Johnson, F., & Sharma, A. (2017). Spatial Disaggregation of Coarse Soil Moisture Data by Using High-Resolution Remotely Sensed Vegetation Products. IEEE Geoscience and Remote Sensing Letters, 14, 1604-1608.
  150. Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, S.H. (2017). Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sensing of Environment, 195, 202-217.
  151. Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P., Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew, A., Merchant, C.J., Müller, B., Popp, T., Reuter, M., Sandven, S., Senftleben, D., Stengel, M., Van Roozendael, M., Wenzel, S., & Willén, U. (2017). Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sensing of Environment, 203, 9-39.
  152. Lee, J.H., Zhao, C., & Kerr, Y. (2017). Stochastic Bias Correction and Uncertainty Estimation of Satellite-Retrieved Soil Moisture Products. Remote Sensing, 9.
  153. Leeper, R.D., Bell, J.E., Vines, C., & Palecki, M. (2017). An Evaluation of the North American Regional Reanalysis Simulated Soil Moisture Conditions during the 2011–13 Drought Period. Journal of Hydrometeorology, 18, 515-527.
  154. Liangjing, Z. (2017). Terrestrial water storage from GRACE gravity data for hydrometeorological applications. -
  155. Lievens, H., Martens, B., Verhoest, N.E.C., Hahn, S., Reichle, R.H., & Miralles, D.G. (2017). Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates. Remote Sensing of Environment, 189, 194-210.
  156. Lievens, H., Reichle, R.H., Liu, Q., De Lannoy, G.J.M., Dunbar, R.S., Kim, S.B., Das, N.N., Cosh, M., Walker, J.P., & Wagner, W. (2017). Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophysical Research Letters, 44, 6145-6153.
  157. Lin, X., Wen, J., Tang, Y., Ma, M., You, D., Dou, B., Wu, X., Zhu, X., Xiao, Q., & Liu, Q. (2017). A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product. International Journal of Digital Earth, 11, 308-328.
  158. Liu, Q., Hao, Y., Stebler, E., Tanaka, N., & Zou, C.B. (2017). Impact of plant functional types on coherence between precipitation and soil moisture - a wavelet analysis. Geophysical Research Letters..
  159. Liu, Z., Li, P., & Yang, J. (2017). Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal. Remote Sensing, 9.
  160. Mahecha, M.D., Gans, F., Sippel, S., Donges, J.F., Kaminski, T., Metzger, S., Migliavacca, M., Papale, D., Rammig, A., & Zscheischler, J. (2017). Detecting impacts of extreme events with ecological in-situ monitoring networks. Biogeosciences Discussions, 1-33.
  161. Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., & Verhoest, N.E.C. (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903-1925.
  162. Martinez, G., Brocca, L., Gerke, H.H., & Pachepsky, Y.A. (2017). Soil Variability and Biogeochemical Fluxes: Toward a Better Understanding of Soil Processes at the Land Surface. Vadose Zone Journal, 16.
  163. Massari, C., Su, C.-H., Brocca, L., Sang, Y.-F., Ciabatta, L., Ryu, D., & Wagner, W. (2017). Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sensing of Environment, 198, 17-29.
  164. McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H., & Wood, E.F. (2017). The Future of Earth Observation in Hydrology. Hydrology and Earth System Sciences Discussions, 1-55.
  165. Miyaoka, K., Gruber, A., Ticconi, F., Hahn, S., Wagner, W., Figa-Saldana, J., & Anderson, C. (2017). Triple Collocation Analysis of Soil Moisture From Metop-A ASCAT and SMOS Against JRA-55 and ERA-Interim. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2274-2284.
  166. Mohanty, B.P., Cosh, M.H., Lakshmi, V., & Montzka, C. (2017). Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal, 16.
  167. Montzka, C., Bogena, H., Zreda, M., Monerris, A., Morrison, R., Muddu, S., & Vereecken, H. (2017). Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes. Remote Sensing, 9.
  168. Murguia-Flores, F., Arndt, S., Ganesan, A.L., Murray-Tortarolo, G.N., & Hornibrook, E.R.C. (2017). Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development Discussions, 1-38.
  169. Nguyen, H.H., Kim, H., & Choi, M. (2017). Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region. Advances in Water Resources, 108, 125-138.
  170. Nilawar, A., Calderella, C., Lakhankar, T., Waikar, M., & Munoz, J. (2017). Satellite Soil Moisture Validation Using Hydrological SWAT Model: A Case Study of Puerto Rico, USA. Hydrology, 4.
  171. Pan, X., Kornelsen, K.C., & Coulibaly, P. (2017). Estimating Root Zone Soil Moisture at Continental Scale Using Neural Networks. JAWRA Journal of the American Water Resources Association, 53, 220-237.
  172. Park, S., Im, J., Park, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237-238, 257-269.
  173. Park, S., Park, S., Im, J., Rhee, J., Shin, J., & Park, J. (2017). Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees. Water, 9.
  174. Peng, J., Loew, A., Merlin, O., & Verhoest, N.E.C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55, 341-366.
  175. Petropoulos, G.P., & McCalmont, J.P. (2017). An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors (Basel), 17.
  176. Phillips, T.J., Klein, S.A., Ma, H.-Y., Tang, Q., Xie, S., Williams, I.N., Santanello, J.A., Cook, D.R., & Torn, M.S. (2017). Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains. Journal of Geophysical Research: Atmospheres.
  177. Pierdicca, N., Fascetti, F., Pulvirenti, L., & Crapolicchio, R. (2017). Error Characterization of Soil Moisture Satellite Products: Retrieving Error Cross-Correlation Through Extended Quadruple Collocation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4522-4530.
  178. Przeździecki, K., Zawadzki, J., Cieszewski, C., & Bettinger, P. (2017). Estimation of soil moisture across broad landscapes of Georgia and South Carolina using the triangle method applied to MODIS satellite imagery. Silva Fennica, 51.
  179. Rains, D., Han, X., Lievens, H., Montzka, C., & Verhoest, N.E.C. (2017). SMOS brightness temperature assimilation into the Community Land Model. Hydrology and Earth System Sciences, 21, 5929-5951.
  180. Ran, Y., Li, X., Jin, R., Kang, J., & Cosh, M.H. (2017). Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape. Water Resources Research, 53, 283-301.
  181. Ray, R., Fares, A., He, Y., & Temimi, M. (2017). Evaluation and Inter-Comparison of Satellite Soil Moisture Products Using In Situ Observations over Texas, U.S. Water, 9.
  182. Reichle, R.H., Draper, C.S., Liu, Q., Girotto, M., Mahanama, S.P.P., Koster, R.D., & Lannoy, G.J.M.D. (2017). Assessment of MERRA-2 Land Surface Hydrology Estimates. Journal of Climate, 30, 2937-2960.
  183. Rodríguez-Fernández, N.J., Muñoz Sabater, J., Richaume, P., de Rosnay, P., Kerr, Y.H., Albergel, C., Drusch, M., & Mecklenburg, S. (2017). SMOS near-real-time soil moisture product: processor overview and first validation results. Hydrology and Earth System Sciences, 21, 5201-5216.
  184. Scholze, M., Buchwitz, M., Dorigo, W., Guanter, L., & Quegan, S. (2017). Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences Discussions, 1-49.
  185. Sun, G., Peng, F., & Mu, M. (2017). Uncertainty assessment and sensitivity analysis of soil moisture based on model parameter errors – Results from four regions in China. Journal of Hydrology, 555, 347-360.
  186. Sun, Y., Huang, S., Ma, J., Li, J., Li, X., Wang, H., Chen, S., & Zang, W. (2017). Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sensing, 9.
  187. Tobin, K.J., Torres, R., Crow, W.T., & Bennett, M.E. (2017). Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS. Hydrology and Earth System Sciences, 21, 4403-4417.
  188. van der Schalie, R., de Jeu, R.A.M., Kerr, Y.H., Wigneron, J.P., Rodríguez-Fernández, N.J., Al-Yaari, A., Parinussa, R.M., Mecklenburg, S., & Drusch, M. (2017). The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E. Remote Sensing of Environment, 189, 180-193.
  189. Varikoden, H., & Revadekar, J.V. (2017). Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon. Pure and Applied Geophysics, 175, 1187-1196.
  190. Williamson, M., Adams, J.R., Berg, A.A., Derksen, C., Toose, P., & Walker, A. (2017). Plot-scale assessment of soil freeze/thaw detection and variability with impedance probes: implications for remote sensing validation networks. Hydrology Research.
  191. Xing, C., Chen, N., Zhang, X., & Gong, J. (2017). A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations. Remote Sensing, 9.
  192. Yao, P., Shi, J., Zhao, T., Lu, H., & Al-Yaari, A. (2017). Rebuilding Long Time Series Global Soil Moisture Products Using the Neural Network Adopting the Microwave Vegetation Index. Remote Sensing, 9.
  193. Yuan, S., & Quiring, S.M. (2017). Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations. Hydrology and Earth System Sciences, 21, 2203-2218.
  194. Zhang, X., Zhang, T., Zhou, P., Shao, Y., & Gao, S. (2017). Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sensing, 9.
  195. Zhao, W., Li, A., Jin, H., Zhang, Z., Bian, J., & Yin, G. (2017). Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and In Situ Measurements. IEEE Transactions on Geoscience and Remote Sensing, 55, 2632-2645.
  196. Zhao, W., Li, A., & Zhao, T. (2017). Potential of Estimating Surface Soil Moisture With the Triangle-Based Empirical Relationship Model. IEEE Transactions on Geoscience and Remote Sensing, 55, 6494-6504.
  197. Zhou, H., Chang, J., Sun, J., Shang, C., Han, F., & Hu, D. (2017). Spatial variation of temperature of surface soil layer adjacent to constructions: A theoretical framework for atmosphere-building-soil energy flow systems. Building and Environment, 124, 143-152.
  198. Al-Yaari, A., Wigneron, J. P., Kerr, Y., de Jeu, R., Rodriguez-Fernandez, N., van der Schalie, R., … Ducharne, A. (2016). Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sensing of Environment, 180, 453–464.
  199. An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., … Ke, Z. (2016). Validation of the ESA CCI soil moisture product in China. International Journal of Applied Earth Observation and Geoinformation, 48, 28–36.
  200. Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau: EVALUATE GLDAS SOIL MOISTURE OVER TP. Journal of Geophysical Research: Atmospheres, 121, 6, 2658–2678.
  201. Chen, X., Su, Y., Liao, J., Shang, J., Dong, T., Wang, C., … Liu, L. (2016). Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979-2010): China’s 32 Year Soil Moisture. Journal of Geophysical Research: Atmospheres, 121, 10, 5177–5192.
  202. Cissé, S., Eymard, L., Ottlé, C., Ndione, J., Gaye, A., & Pinsard, F. (2016). Rainfall Intra-Seasonal Variability and Vegetation Growth in the Ferlo Basin (Senegal). Remote Sensing, 8, 1, 66.
  203. Du, J., Kimball, J. S., & Jones, L. A. (2016). Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 54, 1, 597–608.
  204. Enenkel, M., Reimer, C., Dorigo, W., Wagner, W., Pfeil, I., Parinussa, R., & De Jeu, R. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20, 10, 4191–4208.
  205. Faridani, F., Farid, A., Ansari, H., & Manfreda, S. (2016). Estimation of the Root-Zone Soil Moisture Using Passive Microwave Remote Sensing and SMAR Model. Journal of Irrigation and Drainage Engineering, 4016070.
  206. Fascetti, F., Pierdicca, N., Crapolicchio, R., Pulvirenti, L., & Muoz-Sabater, J. (2016). An assessment of SMOS version 6.20 products through Triple and Quadruple Collocation techniques considering ASCAT, ERA/Interim LAND, ISMNand SMAP soil moisture data. IEEE, 91–94.
  207. Fascetti, F., Pierdicca, N., Pulvirenti, L., Crapolicchio, R., & Muñoz-Sabater, J. (2016). A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013. International Journal of Applied Earth Observation and Geoinformation, 45, 135–142.
  208. Fernandez-Moran, R., Wigneron, J.-P., De Lannoy, G., Lopez-Baeza, E., Mialon, A., Mahmoodi, A., … Kerr, Y. (2016). Calibrating the effective scattering albedo in the SMOS algorithm: Some first results. IEEE, 826–829.
  209. Gonzalez-Zamora, A., Sanchez, N., & Martinez-Fernandez, J. (2016). Validation of Aquarius Soil Moisture Products Over the Northwest of Spain: A Comparison With SMOS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2763–2769.
  210. González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., & Wagner, W. (2016). Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources, 96, 339–353.
  211. Griesfeller, A., Lahoz, W. A., Jeu, R. A. M. d., Dorigo, W., Haugen, L. E., Svendby, T. M., & Wagner, W. (2016). Evaluation of satellite soil moisture products over Norway using ground-based observations. International Journal of Applied Earth Observation and Geoinformation, 45, 155–164.
  212. Gruber, A., Su, C.-H., Crow, W. T., Zwieback, S., Dorigo, W. A., & Wagner, W. (2016). Estimating error cross-correlations in soil moisture data sets using extended collocation analysis: EXTENDED COLLOCATION ANALYSIS. Journal of Geophysical Research: Atmospheres, 121, 3, 1208–1219.
  213. Han, M., Lu, H., & Yang, K. (2016). Development of passive microwave retrieval algorithm for estimation of surface soil temperature from AMSR-E data. IEEE, 1671–1674.
  214. Kędzior, M., & Zawadzki, J. (2016). Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma, 283, 21–31.
  215. Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63.
  216. Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., … Wigneron, J.-P. (2016). Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sensing of Environment, 180, 40–63.
  217. Kim, S., Parinussa, R., Liu, Y., Johnson, F., & Sharma, A. (2016). Merging Alternate Remotely-Sensed Soil Moisture Retrievals Using a Non-Static Model Combination Approach. Remote Sensing, 8, 6, 518.
  218. Koch, F., Schlenz, F., Prasch, M., Appel, F., Ruf, T., & Mauser, W. (2016). Soil Moisture Retrieval Based on GPS Signal Strength Attenuation. Water, 8, 7, 276.
  219. Lee, J. H. (2016). The consecutive dry days to trigger rainfall over West Africa. Journal of Hydrology.
  220. Leng, P., Song, X., Duan, S.-B., & Li, Z.-L. (2016). Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network. International Journal of Remote Sensing, 37, 24, 5902–5917.
  221. Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Férnandez-Prieto, D., … Verhoest, N. E. C. (2016). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development Discussions, 1–36.
  222. Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., & Verhoest, N. E. C. (2016). Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. International Journal of Applied Earth Observation and Geoinformation, 48, 146–162.
  223. McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., & Verdin, J. P. (2016). Evaluating ESA CCI soil moisture in East Africa. International Journal of Applied Earth Observation and Geoinformation, 48, 96–109.
  224. Nair, A., & Indu, J. (2016). Enhancing Noah Land Surface Model Prediction Skill over Indian Subcontinent by Assimilating SMOPS Blended Soil Moisture. Remote Sensing, 8, 12, 976.
  225. Orth, R., Dutra, E., & Pappenberger, F. (2016). Improving Weather Predictability by Including Land Surface Model Parameter Uncertainty. Monthly Weather Review, 144, 4, 1551–1569.
  226. Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., & Camps, A. (2016). Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations. Remote Sensing, 8, 7, 587.
  227. Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986.
  228. Pal, M., Maity, R., & Dey, S. (2016). Statistical Modelling of Vertical Soil Moisture Profile: Coupling of Memory and Forcing. Water Resources Management, 30, 6, 1973–1986.
  229. Parinussa, R., de Jeu, R., van der Schalie, R., Crow, W., Lei, F., & Holmes, T. (2016). A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input. Climate, 4, 4, 50.
  230. Piles, M., Petropoulos, G. P., Sánchez, N., González-Zamora, Á., & Ireland, G. (2016). Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180, 403–417.
  231. Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., … Pulliainen, J. (2016). SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment, 180, 346–360.
  232. Santi, E., Paloscia, S., Pettinato, S., Brocca, L., & Ciabatta, L. (2016). Robust Assessment of an Operational Algorithm for the Retrieval of Soil Moisture From AMSR-E Data in Central Italy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 6, 2478–2492.
  233. Santi, E., Paloscia, S., Pettinato, S., & Fontanelli, G. (2016). Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International Journal of Applied Earth Observation and Geoinformation, 48, 61–73.
  234. Schalie, R. va. der, Kerr, Y. H., Wigneron, J. P., Rodríguez-Fernández, N. J., Al-Yaari, A., & Jeu, R. A. M. d. (2016). Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model. International Journal of Applied Earth Observation and Geoinformation, 45, 125–134.
  235. Scholze, M., Kaminski, T., Knorr, W., Blessing, S., Vossbeck, M., Grant, J. P., & Scipal, K. (2016). Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sensing of Environment, 180, 334–345.
  236. Shin, Y., Lim, K., Park, K., & Jung, Y. (2016). Development of Dynamic Ground Water Data Assimilation for Quantifying Soil Hydraulic Properties from Remotely Sensed Soil Moisture. Water, 8, 8, 311.
  237. Su, C.-H., Ryu, D., Dorigo, W., Zwieback, S., Gruber, A., Albergel, C., … Wagner, W. (2016). Homogeneity of a global multisatellite soil moisture climate data record: HOMOGENEITY OF SOIL MOISTURE CDR. Geophysical Research Letters..
  238. Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., … Huang, J. (2016). Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 218–219, 288–297.
  239. Wu, Q., Liu, H., Wang, L., & Deng, C. (2016). Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 45, 187–199.
  240. Zawadzki, J., & Kędzior, M. (2016). Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data. International Journal of Applied Earth Observation and Geoinformation, 45, 110–124.
  241. Zeng, J., Chen, K.-S., Bi, H., & Chen, Q. (2016). A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Transactions on Geoscience and Remote Sensing, 54, 8, 4929–4940.
  242. Zhang, D., Madsen, H., Ridler, M. E., Kidmose, J., Jensen, K. H., & Refsgaard, J. C. (2016). Multivariate hydrological data assimilation of soil moisture and groundwater head. Hydrology and Earth System Sciences, 20, 10, 4341–4357.
  243. Zhao, L., Yang, Z.-L., & Hoar, T. J. (2016). Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4–RTM–DART System. Journal of Hydrometeorology, 17, 9, 2431–2454.
  244. Zwieback, S., Su, C.-H., Gruber, A., Dorigo, W. A., & Wagner, W. (2016). The Impact of Quadratic Nonlinear Relations between Soil Moisture Products on Uncertainty Estimates from Triple Collocation Analysis and Two Quadratic Extensions. Journal of Hydrometeorology, 17, 6, 1725–1743.
  245. Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., … Vitart, F. (2015). ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19, 1, 389–407.
  246. Boussetta, S., Balsamo, G., Dutra, E., Beljaars, A., & Albergel, C. (2015). Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction. Remote Sensing of Environment, 163, -8, 111–126.
  247. Brocca, L., Massari, C., Ciabatta, L., Moramarco, T., Penna, D., Zuecco, G., … Martínez-Fernández, J. (2015). Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of the SM2RAIN algorithm. Journal of Hydrology and Hydromechanics, 63, 3.
  248. Calvet, J.-C., Fritz, N., Berne, C., Piguet, B., Maurel, W., & Meurey, C. (2015). Impact of gravels and organic matter on the thermal properties of grassland soils in southern France. SOIL Discussions, 2, 1, 737–765.
  249. Cammalleri, C., Micale, F., & Vogt, J. (2015). On the value of combining different modelled soil moisture products for European drought monitoring. Journal of Hydrology, 525, 547–558.
  250. Chappell, A., Weaver, J., Purohit, S., Smith, W., Schuchardt, K., West, P., … Fox, P. (2015). Enhancing the impact of science data toward data discovery and reuse. IEEE, 271–277.
  251. Coopersmith, E. J., Cosh, M. H., Bindlish, R., & Bell, J. (2015). Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN). Advances in Water Resources, 85, 79–85.
  252. Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew, A., … Kidd, R. (2015). Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 162, 380–395.
  253. Fernandez-Moran, R., Wigneron, J.-P., Lopez-Baeza, E., Al-Yaari, A., Bircher, S., Coll-Pajaron, A., … Kerr, Y. (2015). Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe . IEEE, 5182–5185.
  254. Gonzalez-Zamora, A., Sanchez, N., Martinez-Fernandez, J., & Gumuzzio, A. (2015). Validation of SMOS and Aquarius soil moisture using two in situ networks in Spain. IEEE, 4738–4741.
  255. Hottenstein, J. D., Ponce-Campos, G. E., Moguel-Yanes, J., & Moran, M. S. (2015). Impact of Varying Storm Intensity and Consecutive Dry Days on Grassland Soil Moisture. Journal of Hydrometeorology, 16, 1, 106–117.
  256. Kim, S., Liu, Y. Y., Johnson, F. M., Parinussa, R. M., & Sharma, A. (2015). A global comparison of alternate AMSR2 soil moisture products: Why do they differ?. Remote Sensing of Environment, 161, 43–62.
  257. Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., & Sharma, A. (2015). A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation: IMPROVING AMSR2 SOIL MOISTURE RETRIEVALS. Geophysical Research Letters, 42, 16, 6662–6670.
  258. Kornelsen, K. C., & Coulibaly, P. (2015). Reducing multiplicative bias of satellite soil moisture retrievals. Remote Sensing of Environment, 165, 109–122.
  259. Lee, J., & Im, J. (2015). A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS) Soil Moisture: Retrieval Ensembles. Remote Sensing, 7, 12, 16045–16061.
  260. Leng, P., Song, X., Li, Z.-L., Wang, Y., & Wang, R. (2015). Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area. Remote Sensing, 7, 4, 4112–4138.
  261. Nicolai-Shaw, N., Hirschi, M., Mittelbach, H., & Seneviratne, S. I. (2015). Spatial representativeness of soil moisture using in situ, remote sensing, and land reanalysis data: SPATIAL REPRESENTATIVENESS OF SOIL MOISTURE. Journal of Geophysical Research: Atmospheres, 120, 19, 9955–9964.
  262. Parinussa, R. M., Holmes, T. R. H., Wanders, N., Dorigo, W. A., & de Jeu, R. A. M. (2015). A Preliminary Study toward Consistent Soil Moisture from AMSR2. Journal of Hydrometeorology, 16, 2, 932–947.
  263. Pierdicca, N., Fascetti, F., Pulvirenti, L., Crapolicchio, R., & Munoz-Sabater, J. (2015). Quadruple Collocation Analysis for Soil Moisture Product Assessment. IEEE Geoscience and Remote Sensing Letters, 12, 8, 1595–1599.
  264. Pierdicca, N., Fascetti, F., Pulvirenti, L., Crapolicchio, R., & Muñoz-Sabater, J. (2015). Analysis of ASCAT, SMOS, in-situ and land model soil moisture as a regionalized variable over Europe and North Africa. Remote Sensing of Environment, 170, 280–289.
  265. Spennemann, P. C., Rivera, J. A., Saulo, A. C., & Penalba, O. C. (2015). A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America. Journal of Hydrometeorology, 16, 1, 158–171.
  266. Su, C.-H., Narsey, S. Y., Gruber, A., Xaver, A., Chung, D., Ryu, D., & Wagner, W. (2015). Evaluation of post-retrieval de-noising of active and passive microwave satellite soil moisture. Remote Sensing of Environment, 163, 127–139.
  267. Zwieback, S., Paulik, C., & Wagner, W. (2015). Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval. Remote Sensing, 7, 3, 3206–3231.
  268. Angevine, W. M., Bazile, E., Legain, D., and Pino, D. (2014). Land surface spinup for episodic modeling. Atmos. Chem. Phys., 14, 8165-8172. doi:10.5194/acp-14-8165-2014
  269. Albergel, C., Dorigo, W.,Balsamo, G., Muñoz-Sabater, J., de Rosnay, P., Isaksen, L., Brocca, L., de Jeu,R., Wagner, W. (2013). Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sensing of Environment, 138, 77-89. doi: 10.1016/j.rse.2013.07.009
  270. Albergel, C., Dorigo, W., Reichle, R.H.,Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., Isaksen, L., de Jeu, R., Wagner,W. (2013). Skill and global trend analysis ofsoil moisture from reanalyses and microwave remote sensing. Journal of Hydrometeorology, 14, 1259-1277. doi:10.1175/JHM-D-12-0161.1
  271. Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L., & Muñoz-Sabater, J. (2012). Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. Journal of Hydrometeorology, 13, 1442-1460
  272. Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., & Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 118, 215-226
  273. Albergel, C.., G. Balsamo, P. de Rosnay, J. Muñoz-Sabater, and S. Boussetta, (2012). A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data. Hydrol. Earth Syst. Sci., 16, 3607-3620
  274. Collow, T.W., Robock, A., Basara, J.B., Illston, B.G. (2012). Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. Journal of Geophysical Research D: Atmospheres, 117, 9
  275. dall''Amico, J.T.; Schlenz, F.; Loew, A.; Mauser, W. (2012). First Results of SMOS Soil Moisture Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1507-1516
  276. Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., De Jeu, R. A. M., Wagner, W., McCabe, M. F., . . . Van Dijk, A. I. J. M. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123, 280-297
  277. Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., . . . Zhou, X. H. (2012). A framework for benchmarking land models. Biogeosciences, 9, 10, 3857-3874
  278. Mecklenburg, S., Drusch, M., Kerr, Y. H., Font, J., Martin-Neira, M., Delwart, S., . . . Crapolicchio, R. (2012). ESA's soil moisture and ocean salinity mission: Mission performance and operations. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1354-1366
  279. Pan, M., Sahoo, A.K., Wood, E.F., Al Bitar, A., Leroux, D., Kerr, Y.H. (2012). An initial assessment of SMOS derived soil moisture over the continental United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 6211458, 1448-1457
  280. Parrens, M., Zakharova, E., Lafont, S., Calvet, J.-C., Kerr, Y., Wagner, W., and Wigneron, J.-P. (2012). Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci., 16, 423-440. doi:10.5194/hess-16-423-2012
  281. Schlenz, F.; dall''Amico, J.T.; Loew, A.; Mauser, W. (2012). Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50, 5, 1517-1529
  282. Skierucha, W., Wilczek, A., & Szypłowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26, 2, 187-197
  283. Van doninck, J., Peters, J., Lievens, H., De Baets, B., and Verhoest, N. E. C. (2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide Swath time series. Hydrol. Earth Syst. Sci., 16, 773-786
  284. Wanders, N., Karssenberg, D., Bierkens, M., Parinussa, R., de Jeu, R., van Dam, J., & de Jong, S. (2012). Observation uncertainty of satellite soil moisture products determined with physically-based modeling. Remote Sensing of Environment, 127, 341-356
  285. Brocca L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M. (2011). Soil Moisture estimation through ASCAT ans AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115, 3390-3408
  286. Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P. (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 15, 425-436. doi:10.5194/hess-15-425-2011